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Spatiotemporal Graph and Hypergraph
Partitioning Models for Sparse Matrix-Vector
Multiplication on Many-Core Architectures

Nabil Abubaker, Kadir Akbudak, and Cevdet Aykanat

Abstract—There exist graph/hypergraph partitioning-based row/column reordering methods for encoding either spatial or temporal
locality separately for sparse matrix-vector multiplication (SpMV) operations. Spatial and temporal hypergraph models in these
methods are extended to encapsulate both spatial and temporal localities based on cut/uncut net categorization obtained from vertex
partitioning. These extensions of spatial and temporal hypergraph models encode the spatial locality primarily and the temporal locality
secondarily, and vice-versa, respectively. However, the literature lacks models that simultaneously encode both spatial and temporal
localities utilizing only vertex partitioning for further improving the performance of SpMV on shared-memory architectures. In order to fill
this gap, we propose a novel spatiotemporal hypergraph model that leads to a one-phase spatiotemporal reordering method which
encodes both types of locality simultaneously. We also propose a framework for spatiotemporal methods which encodes both types of
locality in two dependent phases and two separate phases. The validity of the proposed spatiotemporal models and methods are
tested on a wide range of sparse matrices and the experiments are performed on both a 60-core Intel Xeon Phi processor and a Xeon
processor. Results show the validity of the methods via almost doubling the Gflop/s performance through enhancing data locality in
parallel SpMV operations.

Index Terms—Sparse matrix, sparse matrix-vector multiplication, data locality, spatial locality, temporal locality, hypergraph model,
bipartite graph model, graph model, hypergraph partitioning, graph partitioning, Intel Many Integrated Core Architecture, Intel Xeon Phi.
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1 INTRODUCTION

S PARSE matrix-vector multiplication (SpMV) is a
building-block for many applications. In this work, we

focus on repeated SpMV operation of the form y = Ax,
where the sparsity pattern of matrix A does not change.
Thread-level parallelization of SpMV on today’s many-core
cache-coherent architectures highly necessitates utilizing
both spatial locality and temporal locality in order to effi-
ciently use the cache hierarchy. Here, spatial locality refers
to the use of data elements within relatively close storage lo-
cations. That is, if a particular storage location is referenced
at a particular time, then it is likely that nearby memory
locations will be referenced in the near future. Temporal
locality refers to the reuse of specific data within a relatively
small time duration. That is, if at one point a particular
memory location is referenced, then it is likely that the same
location will be referenced in the near future. In terms of
cache hierarchy, per-core cache sizes of today’s processors
vary from tens of kilobytes [1] to several megabytes. In this
work, we focus on reordering-based methods for accelerat-
ing SpMV for any kind of cache hierarchy with any capacity.

1.1 Data Locality in Parallel SpMV

Here, we present data locality issues in SpMV. For the sake
of clarity of the presentation, we assume that one or more
rows are processed at a time and some kind of compression
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is used for indexing the nonzeros in such a way that indirect
accesses are performed on x-vector entries. In other words,
we assume that the sparse matrix is stored and processed
using the CRS (Compressed Row Storage) scheme.

Temporal locality is not feasible in accessing nonzeros
of the input matrix, because these nonzeros together with
their indices are accessed only once, whereas spatial locality
is already achieved because the nonzeros are stored and
accessed consecutively.

Temporal locality in accessing y-vector entries is
achieved on the highest level of memory, because partial
results for the same y-vector entries are summed consecu-
tively since nonzeros are accessed rowwise. Spatial locality
is already achieved because y-vector entries are accessed
consecutively.

Temporal locality is feasible in accessing x-vector entries,
because these entries are accessed multiple times while
processing nonzeros in different rows. Spatial locality is
also feasible, because these entries are accessed irregularly
depending on the index arrays. These two types of localities
constitute the main bottleneck of rowwise SpMV.

Regarding the above-mentioned data locality character-
istics, the possibility of exploiting spatial locality in ac-
cessing x-vector entries is increased by ordering columns
with similar sparsity patterns nearby. The possibility of
exploiting temporal locality in accessing x-vector entries is
increased by ordering rows with similar sparsity pattern
nearby. Simultaneously reordering the columns and rows
with similar sparsity patterns nearby increases the possi-
bility of exploiting both spatial and temporal localities in
accessing x-vector entries.
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Fig. 1: A taxonomy for reordering methods used to exploit data locality in SpMV operations. Shaded leaves denote
proposed methods.

1.2 Contributions

In this work, we mainly focus on reordering models that
exploit spatiotemporal locality for parallel SpMV operations
on many-core architectures. Here, spatiotemporal locality
refers to exploiting both spatial and temporal localities.
We present Fig. 1 which contains a taxonomy of reordering
methods for exploiting spatial, temporal and spatiotemporal
localities in CRS-based SpMV. We should note here that the
fine-grain hypergraph models are out of scope of this paper
due to their high partitioning overheads [14] so the existing
works [14], [23] are not included in this taxonomy. Table 1
shows the list of notations and abbreviations used in this
figure, as well as throughout the paper.

In Section 3, we discuss methods that aim at exploit-
ing only one type of locality. We summarize the existing
Spatial Hypergraph (SH) and Temporal Hypergraph (TH)
methods. Moreover, we propose to use similarity graphs
in graph partitioning (GP) based methods to exploit spatial
and temporal localities separately, which are referred to here
as Spatial Graph (SG) and Temporal Graph (TG), respec-
tively. To our knowledge, similarity graph models are not
used for improving SpMV performance through reordering
columns/rows of a sparse matrix, although various similar-
ity graph models have been proposed in different contexts
such as sparse matrix-matrix multiplication [2], declustering
for distributed databases [3] and parallel text retrieval [4].

In Section 4, we propose a new two-phase framework for
exploiting both spatial and temporal localities. In the first
phase, we use a column reordering method for encoding
spatial locality in order to find an assignment of x-vector
entries into lines (blocks). In the second phase, we use a row
reordering method for encoding temporal locality among
the lines identified in the first phase in order to exploit local-
ity on the access of lines instead of single words. According
to this framework, we propose and implement the Temporal
Hypergraph on lines of data entries (SH→THline or THline

shortly) method that uses the SH method in the first phase
and uses the TH method in the second phase.

In Section 5, we propose two new one-phase methods
that simultaneously encode spatial and temporal localities
in accessing x-vector entries. The first method is based on
bipartite graph partitioning and will be referred to as Spa-
tioTemporal Bipartite Graph (STBG). The second method is

based on hypergraph partitioning (HP) and will be referred
to as SpatioTemporal Hypergraph (STH).

In Sections 3 and 5, after presenting each method, we
also provide a brief insight on how the method works so
that the partitioning objective of minimizing the cutsize in
the graph and hypergraph models relate to reducing the
number of x-vector entries that are not reused due to loss of
spatial and/or temporal localities.

In order to empirically verify the validity of the proposed
methods, we use Sparse Library (SL) [5], [6], [7], which is
highly optimized for performing SpMV on shared-memory
architectures. We conduct experiments on both 60-core Xeon
Phi and Xeon processors using a wide-range of sparse
matrices arising in different applications. The results given
in Section 7 show that the proposed spatiotemporal methods
that aim at simultaneously exploiting both types of locali-
ties substantially perform better than the non-simultaneous
methods. The results also show the superiority of the
HP-based methods over the GP-based methods.

TABLE 1: List of notations and abbreviations

Concept Meaning

G Graph model
H Hypergraph model
S* Spatial; used with graph or hypergraph models
T * Temporal; used with graph or hypergraph models
V Set of Vertices
E Set of Edges (for a graph model)
N Set of Nets (for a hypergraph model)
d* Data; used with a vertex or a net, or with sets V and N
t* Task; used with a vertex or a net, or with sets V and N
GP Graph Partitioning
HP Hypergraph Partitioning
SG Spatial Graph
TG Temporal Graph
SH Spatial Hypergraph
TH Temporal Hypergraph
SH→THline

(THline)
Temporal Hypergraph on Lines (blocks) of data entries

STBG SpatioTemporal Bipartite Graph
STH SpatioTemporal Hypergraph
* used as a superscript

2 PRELIMINARIES

Graph and hypergraph partitioning approaches have been
used in the literature to attain row/column reordering
for exploiting spatial and/or temporal locality in the
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SpMV operation [13], [14], [27], [28]. Here, we briefly
explain how the methods presented in this work utilize
the graph/hypergraph partitioning framework to obtain
row/column reordering for SpMV on many-core architec-
tures.

A K-way partition Π(V) = {V1,V2, . . . ,VK} on vertices
of the graph and hypergraph models presented in this
paper is decoded as a partial reordering on the corre-
sponding matrix dimension(s) as described as follows. For
k = 1, 2, . . . ,K−1:

(i) In spatial methods, the columns corresponding to the
vertices in Vk+1 are reordered after the columns corre-
sponding to the vertices in Vk.

(ii) In temporal methods, the rows corresponding to the
vertices in Vk+1 are reordered after the rows corre-
sponding to the vertices in Vk.

(iii) In spatiotemporal methods, both row and column re-
orderings described in (i) and (ii) are applied.

The row/column orderings obtained by these methods are
referred to as partial orderings because the rows/columns
corresponding to vertices in a part are reordered arbitrarily.
On the other hand, by keeping the number of vertices per
part sufficiently small, the rows/columns corresponding to
the vertices in a part are considered to be reordered nearby.

In a given partition of a graph, an edge ei,j that connects
a pair of vertices in two different parts is said to be cut, and
uncut otherwise. In a given partition of a hypergraph, a net
ni that connects vertices in more than one part is said to be
cut, and uncut otherwise. In graph and hypergraph models,
the relevant cutsize definitions are as follows respectively:

Graph : edgecut(Π(V)) =
∑

vi∈Vk∧vj∈V`6=k

w(ei,j), (1)

Hypergraph : cutsize(Π(V)) =
∑
ni∈N

w(ni)|con(ni)|. (2)

In (2), con(ni) denotes the connectivity set of ni, that is, the
set of parts that have at least one vertex connected by ni. In
(1) and (2), w(ei,j) and w(ni) denote the weight of edge ei,j
and net ni, respectively.

In Fig. 2, we present a sample 6-by-8 sparse matrix for
the purpose of illustrating the main features of the graph
and hypergraph models. As seen in the figure, letters a,
b, c,. . . are used to denote columns of matrix A, whereas
numbers 1, 2, 3,. . . are used to denote rows of matrix A.
We also include the x-vector entries to better show the cor-
respondence between them and the columns of the matrix
when discussing column reordering methods.

Algorithm 1 The thread-level rowwise parallelization of
SpMV operation based on CRS

Require: Amatrix stored in irow, icol and val arrays, x and
y vectors.

1: //Each iteration performs < ri, x > as a task
2: for i = 1 to # of rows of A in parallel do
3: sum = 0.0
4: for k = irow[i] to irow[i+ 1]− 1 do
5: sum = sum+ val[k] x[icol[k]]

6: y[i] = sum
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Fig. 2: Sample matrix A.

Algorithm 1 is presented to better relate the entities in
the proposed graph-theoretic models with the data accesses
and computations in the CRS-based SpMV operation. For
the sake of clarity of presentation, the following assump-
tions are used in Algorithm 1 and in the insights given to
show the correctness of the methods: The memory align-
ment of A, x and y arrays are ignored. Fully associative
cache is assumed since the scope of this work is to decrease
only capacity misses due to accessing x-vector entries.

In Algorithm 1, the inner-product tasks of the SpMV
operation are represented by the iterations of the outer
for-loop (lines 2-6), whereas the irregular accesses to the
x-vector entries are represented by the indirect indexing
in line 5. In the spatial methods presented in this work,
the vertices of the graph or hypergraph models represent
x-vector entries. These methods aim at reducing the latency
due to irregular accesses to the x-vector entries by reorder-
ing the different x-vector entries used by the same and/or
consecutive inner-products (iterations) nearby. In the tem-
poral methods presented in this work, the vertices of the
graph or hypergraph model represent inner-product tasks.
These methods aim at reusing the x-vector entries brought
to the cache during the previous iteration by reordering the
inner-products so that those using similar x-vector entries
are executed consecutively. In the proposed spatiotemporal
methods, both graph and hypergraph models contain ver-
tices that represent inner-product tasks and x-vector entries
separately. So these methods combine the aims of the spatial
and temporal methods.

The methods presented in this work produce reorderings
for the rows and/or columns of matrix A as well as the x-
and/or y-vector entries involved in the y = Ax operation
given in Algorithm 1. The spatial methods presented in
Section 3.1 produce conformal reorderings for the columns
of A and the entries of the x vector. The temporal methods
presented in Section 3.2 produce conformal reorderings for
the rows of A and the entries of the output y vector. The
spatiotemporal methods presented in Sections 4, 5 and 7.3.2
produce reorderings for both rows and columns of A which
respectively induce conformal reorderings for the entries of
the y and x vectors.

3 EXPLOITING SPATIAL AND TEMPORAL LOCALI-
TIES SEPARATELY

In this section, we discuss graph and hypergraph models
that encode either spatial or temporal locality in accessing
x-vector entries.
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Fig. 3: Graph and hypergraph models (of the sample matrix
given in Fig. 2) for exploiting spatial and temporal localities
separately.

3.1 Spatial Locality

Here, we present two reordering methods based on GP and
HP that encode spatial locality.

3.1.1 Similarity Graph Model GS (SG Model)

For a given matrix A=(ai,j), the similarities between the
use of x-vector entries by the inner product tasks are
represented–in terms of the number of shared rows between
columns–as a similarity graph GS(A) = (Vd, E). A row is
said to be shared between two columns if both of these
two columns have a nonzero on that row. Here, calligraphic
letters are used to denote sets, e.g., V and E denote the sets
of vertices and edges, respectively.

In GS(A), there exists a data vertex vdi ∈ Vd for each
column ci of A. There exists an edge ei,j ∈ E if columns
ci and cj share at least one row. We associate vertices with
unit weights. We associate an edge ei,j with a weight w(ei,j)
equal to the number of shared rows between columns ci and
cj . That is,

w(ei,j) = |{h : ah,i 6= 0 ∧ ah,j 6= 0}|.

An edge ei,j with weight w(ei,j) means that xi and xj
will be accessed together during each of the w(ei,j) inner-
products of rows shared between columns ci and cj .

Fig. 3a shows the SG model GS of the sample matrix
given in Fig. 2. As seen in the figure, there are 8 data vertices
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Fig. 4: Four-way partition Π(Vd) of the spatial hypergraph
given in Fig. 3c and matrix Â, which is obtained via reorder-
ing matrix A according to this partition.

and 7 edges. The edge ee,f has a weight w(ee,f ) = 2 because
columns ce and cf share both rows r5 and r6.

A brief insight on how the method works can be given
as follows: Assume that a cache line contains L words and
each part in Π(Vd) of GS contains exactly L vertices. Since
the columns corresponding to the L words in a part are
reordered consecutively, the corresponding x-vector entries
are located consecutively, possibly on the same line. So we
can assume that an uncut edge ei,j corresponds to assigning
xi and xj to the same line, whereas a cut edge ei,j induces
the allocation of xi and xj to two different lines.

Consider an uncut edge eh,`. During each of the w(eh,`)
inner-products of rows shared between columns ch and
c`, the line that contains both xh and x` will be reused.
Consider a cut edge ei,j . During each of the w(ei,j) inner-
products of rows shared between columns ci and cj , the
line that contains xi or the line that contains xj may not
be reused. So, a cut edge ei,j will incur at most w(ei,j) extra
cache misses due to loss of spatial locality. Thus, minimizing
the edgecut according to (1) relates to reducing the number
of cache misses due to loss of spatial locality.

3.1.2 Hypergraph Model HS (SH Model)

For a given matrix A, the requirement of x-vector entries
by the inner-product tasks are represented as a hypergraph
HS(A) = (Vd,N t). For each column cj of A, there exists a
data vertex vdj ∈ Vd. For each row ri of A, there exists a task
net nti ∈ N t. Net nti connects vertices corresponding to the
columns that share row ri, that is,

Pins(nti) = {vdj : ai,j 6= 0}. (3)

Net nti encodes the fact that |Pins(nti)| x-vector entries
corresponding to the vertices in Pins(nti) will be accessed
together during the inner-product < ri, x >. We associate
vertices and nets with unit weights. HS (A) is topologically
equivalent to the row-net model [8] of matrix A.

Fig. 3c shows the HS model of the sample matrix given
in Fig. 2. In the figure, the task net nt5 connects data vertices
vde , vdf and vdg because the inner product task associated with
row r5 requires the x-vector entries xe, xf and xg .

A brief insight on how the method works can be given
as follows: Assume that a cache line contains L words and
each part in Π(Vd) of HS contains exactly L vertices. Since
the columns corresponding to the L words in a part are
reordered consecutively, the corresponding x-vector entries
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are located consecutively in the memory, possibly on the
same line. A net nti with connectivity set con(nti) means
that inner-product < ri, x > requires the x-vector entries
corresponding to the columns represented by the vertices
in con(nti). These x-vector entries are stored in |con(ni)|
different lines. Hence, at most |con(nti)| cache misses occur
during the inner product <ri, x>. So, minimizing the cut-
size according to (2) corresponds to minimizing the number
of cache misses due to loss of spatial locality.

Fig. 4 shows a four-way partition Π(Vd) ofHS(A) model
of the sample matrix given in Fig. 2 and the permuted
matrix Â. The row order of Â is the same as that of A.
The partial column order of Â is obtained from Π(Vd) as
described in the beginning of Section 2. Hence, in Fig. 4a,
column sets C1, . . . , C4 are obtained via decoding the re-
spective parts V1, . . . ,V4 in Fig. 4b and the x-vector entries
are reordered accordingly.

3.2 Temporal Locality

Here, we present two reordering methods based on GP and
HP that encode temporal locality.

3.2.1 Similarity Graph Model GT (TG Model)

For a given matrix A, the similarities between inner product
tasks associated with each row are represented–in terms
of the number of shared columns–as a similarity graph
GT (A)=(Vt, E). In GT (A), there exists a task vertex vti ∈ Vt

for each row ri of A. There exists an edge ei,j ∈ E if rows ri
and rj share at least one column. We associate vertices with
unit weights. We associate an edge ei,j with a weight w(ei,j)
equal to the number of shared columns between rows ri and
rj . That is,

w(ei,j) = |{h : ai,h 6= 0 ∧ aj,h 6= 0}|.
An edge ei,j with weight w(ei,j) means that w(ei,j) x-vector
entries corresponding to the columns shared between rows
ri and rj will be accessed during each of the inner products
<ri, x> and <rj , x>.

Fig. 3b shows the GT model of the sample matrix given
in Fig. 2. As seen in the figure, there are 6 task vertices and 4
edges. Edge e5,6 has a weight w(e5,6) = 2 because the rows
r5 and r6 have nonzeros in the common columns ce and cf .

A brief insight on how the method works can be given
as follows under the assumption that each line stores one
word: Since the rows corresponding to the vertices in a part
are reordered consecutively, the respective inner product
operations can reuse the required x-vector entries. So we
can assume that an uncut edge ei,j induces the processing
of inner product tasks <ri, x> and <rj , x> consecutively,
whereas a cut edge ei,j means that the inner-product tasks
<ri, x> and <rj , x> are not processed consecutively.

Consider an uncut edge eh,`. During the inner products
< rh, x > and < r`, x >, w(eh,`) x-vector entries corre-
sponding to the columns shared between rows rh and r`
will possibly be reused due to exploiting temporal locality.
Consider a cut edge ei,j . During the inner-products<ri, x>
and <rj , x>, w(ei,j) x-vector entries corresponding to the
columns shared between rows ri and rj may not be reused.
So, a cut edge ei,j will incur at most w(ei,j) extra cache
misses due to loss of temporal locality. So, minimizing the
edgecut according to (1) relates to minimizing the number
of cache misses.
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line for exploiting spatial and temporal lo-
calities in two partitioning phases.

3.2.2 Hypergraph Model HT (TH Model)

For a given matrix A, the dependencies of the inner-product
tasks on the x-vector entries are represented as a hypergraph
HT (A) = (Vt,N d). In HT (A), there exists a task vertex
vti ∈ Vt for each row ri of A. For each column cj of A,
there exists a data net ndj ∈ N d. Net ndj connects the vertices
representing the rows that share column cj , that is,

Pins(ndj ) = {vti : ai,j 6= 0}. (4)

We associate vertices and nets with unit weights. HT (A)
is topologically equivalent to the column-net model [8] of
matrix A.

Fig. 3d shows the HT model of the sample matrix given
in Fig. 2. In Fig. 3d, data net nf connects task vertices v5 and
v6 because the inner product tasks < r5, x > and < r6, x >
both require the x-vector entry xf .

A brief insight on how the method works can be given
as follows under the assumption that each line stores one
word: Since the rows corresponding to the vertices in a
part are reordered consecutively, the corresponding inner-
product operations can reuse the required x-vector entries.
A net ndj with connectivity set con(ndj ) means that x-vector
entry xj is required by the inner-products consisting of
the rows represented by the vertices in con(ndj ). Assuming
that x-vector entries are reused only in processing the rows
belonging to the same part and each line can store one
word, |con(ndj )| cache misses occur due to accessing xj .
So, minimizing the cutsize according to (2) corresponds
to minimizing the number of cache misses due to loss of
temporal locality.

4 EXPLOITING SPATIAL AND TEMPORAL LOCALI-
TIES IN TWO PHASES

The correctness of the temporal methods TG and TH dis-
cussed in Section 3.2 is based on the assumption that each
cache line stores only one word. In order to exploit both
spatial and temporal localities and avoid this assumption,
we propose to utilize the spatial and temporal methods
respectively proposed in Sections 3.1 and 3.2 in a two-phase
approach. In the first phase, a spatial method is applied
to find a reordering on the x-vector entries and then this
reordering is utilized to determine an allocation of x-vector
entries to blocks (cache lines). That is, for a cache line of
size L words, the first L x-vector entries are assigned to the
first line, the second L x-vector entries are assigned to the
second line, etc. In the second phase, a temporal method is
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applied by utilizing this information about the assignment
of x-vector entries to lines.

Although all of the four combinations of spatial and tem-
poral methods are valid, we only consider the hypergraph
models and we propose a new spatiotemporal method
SH→THline which exploits temporal locality on the access
of lines instead of single words.

For a given matrix A, consider HS(A) = (Vd,N t) and
its K-way vertex-partition Π(Vd). When K is large enough,
we obtain an order Γ(Vd) from Π(Vd) on data vertices Vd

of HS(A). The reordering Γ(Vd) is used to assign x-vector
entries to cache lines, possibly in a cache-oblivious manner
since K is large enough. Consider applying the same re-
ordering Γ(Vd) to the columns of the A matrix to obtain
reordered matrix Â (e.g., as shown in Fig. 4b). That is,
column reordering and x-vector reordering are conformal to
each other so that the kth column stripe of Â corresponds to
the kth line of the x-vector. Then we perform a column-wise
compression of the p×q Âmatrix to construct a p×qL matrix
Âline (as shown in Fig. 5a), where qL = d qLe is the number of
lines required to store the x-vector. For each k = 1, 2, ..., L,
we compress the kth column stripe into a single column
with sparsity pattern being equal to the union of sparsities
of all columns that lie in the kth column stripe. Note that
the compression of Â is performed for only building the
hypergraph model, and it has no effect on the CRS data
structure utilized during the local SpMV operations.

In Âline, there exists a nonzero ai,k if at least one column
in the kth column stripe of Â has a nonzero in row i.
Âline summarizes the requirement of x-vector lines by the
inner product tasks. Hence, we can easily construct a tem-
poral hypergraph model HT

line(A)=HT (Âline)=(Vt,N d
line).

In HT
line(A), there exists a task vertex vti ∈ Vt for each row

ri of A. For each consecutive L data vertices in Γ(Vd), there
exists a data line net ndj ∈ N d

line. We associate vertices and
nets with unit weights.

Fig. 5b shows theHT
line model of the sample matrix given

in Fig. 2. In Fig. 5b, the data net ncg connects task vertices v2,
v4 and v5 because the inner product tasks associated with
rows r2, r4 and r5 require the line containing xc and xg .

In a partition Π(Vt) of vertices of HT
line, minimizing

the cutsize according to (2) corresponds to minimizing the
number of cache misses due to loss of temporal locality. The
correctness of HT

line can be derived from the explanation
given for HT in Section 3.2.2 with omitting the assumption
that each line stores only one word.

5 EXPLOITING SPATIAL AND TEMPORAL LOCALI-
TIES SIMULTANEOUSLY

In the GP- and HP-based spatiotemporal methods proposed
in this section, the dependencies of the inner-product tasks
on the x-vector entries and the requirements of x-vector
entries by the tasks are represented as a bipartite graph and
a hypergraph, respectively.

5.1 Bipartite Graph Model GST (STBG Model)

In GST (A) = (V = Vd ∪ Vt, E), there exists a data vertex
vdj ∈ Vd for each column cj of A. For each row ri of A, there
exists a task vertex vti ∈ Vt. There exists an edge ei,j ∈ E
if there is a nonzero ai,j . We associate vertices and edges

Data
vertices

Task
vertices

va

vb

vc

vd

ve

vf

vg

vh

v1

v2

v3

v4

v5

v6

Fig. 6: STBG: Bipartite Graph model GST (A) for exploiting
Spatial and Temporal localities simultaneously.

SH TH
STH

Data
vertices

Task
nets

Data
nets

Task
vertices

va
na

vb
nb

vc
nc

vd
nd

ve
ne

vf
nf

vg
ng

vh
nh

v1n1

v2n2

v3n3

v4n4

v5n5

v6n6

Fig. 7: STH: Hypergraph model HST (A) (of the sample
matrix given in Fig. 2) for exploiting Spatial and Temporal
localities simultaneously.

with unit weights. Fig. 6 shows the GST model of the sample
matrix given in Fig. 2. In Fig. 6, the data vertex va is adjacent
to the task vertices v1 and v2 because the inner product tasks
associated with rows r1 and r2 require the x-vector entry xa.
In Fig. 6, the task vertex v5 is adjacent to data vertices ve, vf
and vg because the inner product task associated with row
r5 depends on the x-vector entries xe, xf and xg .

A brief insight on how the method works can be given as
follows: Consider a task vertex vti that is adjacent to D data
vertices. Among the D edges connecting vti to the data ver-
tices, C cut edges mean that the inner-product task <ri, x>
will not access at most C x-vector entries consecutively. On
the other hand, D − C uncut edges mean that < ri, x >
will access D − C x-vector entries consecutively. Similarly,
consider a data vertex vdj that is adjacent to T task vertices.
Among the T edges connecting vdj to task vertices, C cut
edges mean that x-vector entry xj will not be reused by at
most C tasks due to loss of temporal locality. On the other
hand, T−C uncut edges mean that x-vector entry xj will be
reused by T −C tasks since the rows corresponding to tasks
in the same part are reordered consecutively. So, minimizing
the edgecut according to (1) relates to reducing the number
of cache misses due to loss of both spatial and temporal
localities.

In GST , an edge ei,j can be interpreted as encoding
spatial and temporal localities simultaneously. However, the
GST model overestimates the number of cache misses due
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to the deficiency of the graph model in encoding multi-way
relations as also discussed in a different context in [8].

5.2 Hypergraph Model HST (STH Model)

InHST (A)=(V=Vd∪Vt,N =N t∪N d), there exists a data
vertex vdj ∈ Vd and a data net ndj ∈ N d for each column
cj of A. For each row ri of A, there exists a task vertex
vti ∈ Vt and a task net nti ∈ N t. Task net nti connects the
data vertices corresponding to columns that share row ri, as
well as task vertex vti . Data net ndj connects the task vertices
corresponding to rows that have a nonzero at column cj , as
well as data vertex vdj . That is,

Pins(ndj ) = {vti : ai,j 6= 0} ∪ {vdj },
P ins(nti) = {vdj : ai,j 6= 0} ∪ {vti}. (5)

We associate vertices and nets with unit weights. Fig. 7
shows the HST model of the sample matrix given in Fig. 2.
In the figure, task net n5 connects data vertices ve, vf and
vg because the inner product task associated with row r5
requires the x-vector entries xe, xf and xg . Net n5 also
connects v5. Data net nf connects task vertices v5 and v6
because the inner product tasks associated with rows r5 and
r6 require the x-vector entry xf . Net nf also connects vf .

Comparison of (5) with (3) and (4) as well as comparison
of Fig. 7 with Figs. 3c and 3d show that the STH model can
be considered to be obtained by combining the SH and TH
models into a composite hypergraph model whose parti-
tioning will encode both spatial and temporal localities. The
STH model contains both SH and TH hypergraphs, where
these two hypergraphs are combined through making each
data net ndi also connect the respective data vertex vdi as
well as making each task net nti also connect the respective
task vertex vti . Fig. 7 clearly shows how the composite
hypergraph model STH is obtained from the constituent
hypergraph models SH and TH. As seen in the figure,
the left part contains SH, the right part contains TH and
the middle part shows the data-net–to–vertex connections
and task-net–to–vertex connections performed to realize the
composition. In this way, the STH model encodes simulta-
neous clustering of rows and columns with similar sparsity
patterns to the same part.

A task net nti connecting vertices in Pins(nti)
encodes the requirement of x-vector entries in
{xk : vdk ∈ Pins(nti) \ {vti}} by the inner product <ri, x>.
Hence, assigning the vertices in Pins(nti) \ {vti} into the
same part increases the possibility of exploiting spatial
locality in accessing x-vector entries during the inner
product < ri, x >. Similarly, a data net ndj connecting
vertices in Pins(ndj ) encodes the access of the inner
products consisting of rows in {rk : vtk ∈ Pins(ndj ) \ {vdj }}
to x-vector entry xj . Hence, assigning the vertices in
Pins(ndj ) \ {vdj } into the same part increases the possibility
of exploiting temporal locality in accessing xj . The STH
method can simultaneously achieve these two aims while
obtaining a single Π(V) of HST .

A brief insight on how the method works can be given
as follows: A cut data-net ndj that connects one data vertex
and |Pins(ndj )| − 1 task vertices means that x-vector entry
xj will not be re-used by at most |con(ndj )| − 1 tasks. An
uncut net ndj means that xj will be re-used by |Pins(ndj )|−1

TABLE 2: Sizes of graph and hypergraph models for an
nr×nc matrix that contains nnz nonzeros

Graphs

Method model # vertices # edges

SG GS nc O(nc2

2
)

TG GT nr O(nr2

2
)

STBG GST nr + nc nnz

Hypergraphs

Method model # vertices # nets # pins

SH HS nc nr nnz
TH HT nr nc nnz
STH HST nr + nc nr + nc nr + nc+ 2nnz

THline φ1 HS nc nr nnz
THline φ2 HT

line nr nc
L

[nnz
L
, nnz]

inner-product tasks. Similarly, a task cut net nti that connects
one task vertex and |Pins(nti)| − 1 data vertices means
that inner-product task < ri, x > will not access, at most,
|con(nti)|−1 x-vector entries consecutively. An uncut net nti
means that task i will access |Pins(nti)| − 1 x-vector entries
consecutively, hence exploiting spatial locality. So, minimiz-
ing the cutsize according to (2) corresponds to minimizing
the number of cache misses due to loss of both spatial and
temporal localities.

6 COMPARISON OF THE REORDERING MODELS

Table 2 compares the sizes of the graph and hypergraph
models in terms of the number of rows (nr), columns (nc)
and nonzeros (nnz) of a given matrix A. The similarity
graph models for SG and TG may be quite dense when A
contains dense columns and rows, respectively, as shown by
the square upper-bound on their number of edges.

As seen in Table 2, the number of vertices and nets
in SH and TH are determined by nr and nc in a dual
manner, whereas the number of pins in both methods is
determined by nnz. The number of vertices and nets of
STH is determined by nr + nc, whereas its number of
pins is determined by nr + nc + 2nnz. This is because the
hypergraph model of STH is a composite model obtained
from the hypergraph models of SH and TH.

In THline, phase one (φ1) uses the HS model, so the
number of vertices, nets and pins are identical to those of
SH. In φ2, the number of nets is reduced to the number
of columns of the resulting matrix of φ1, which is nc/L,
where L is the line size. The number of pins is reduced to
the number of nonzeros of the new matrix, which lies in the
range [nnz/L, nnz].

As seen in Table 2, the hypergraph models for SH and
TH as well as the bipartite graph model for STBG are of the
same size, whereas the size of the hypergraph model of STH
is slightly more than twice the size of those models.

7 EXPERIMENTS

7.1 Dataset

The empirical verifications of the proposed methods are
performed on 60 irregular sparse matrices arising in a va-
riety of applications. These matrices are obtained from the
University of Florida Sparse Matrix Collection [9]. Table 3
shows the properties of these matrices, which are grouped
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into three categories: symmetric, square nonsymmetric and
rectangular. In each category, matrices are sorted in alpha-
betical order of their names. In the table, “avg” and “max”
respectively denote the average and maximum number of
nonzeros per row/column. “cov” denotes the coefficient of
variation of the number of nonzeros per row/column and
is defined as the ratio of standard deviation to average.
A “cov” value may be used to quantify the amount of
irregularity in the sparsity pattern of a matrix. That is, larger
“cov” values might refer to higher irregularity.

7.2 Experimental Framework

We evaluate the performances of the proposed methods on
a single 60-core Xeon Phi 5110 co-processor in native mode.
Each core of the Xeon Phi supports running up to four
hardware threads, is clocked at 1.053 GHz and has a private
32 KB L1 cache. The Xeon Phi has 30 MB L2 cache.

We also experiment on a two-socket Xeon system, which
has two E5-2643 processors having 8 cores in total. Each core
supports running up to two hardware threads, is clocked at
3.30 GHz and has a private 32 KB L1 cache and a 256 KB L2
cache. Each Xeon processor has a 10 MB L3 cache.

For performing parallel SpMV operations, we use the
Sparse Library (SL) [5], [6], [7], which is highly optimized for
today’s processors. For evaluations on the Xeon Phi, we use
SL’s row-parallel scheme based on vectorized Bidirectional
Incremental CRS (vecBICRS), which is reported to perform
the best in [5] for the Xeon Phi architecture. For evaluations
on the Xeon processor, we use the SL’s row-parallel scheme
based on Incremental CRS (ICRS), which proceeds similar to
CRS (Algorithm 1). The original row-parallel scheme of the
SL library uses Hilbert-curve ordering, however we remove
this ordering (for results on both Xeon Phi an Xeon) so that
we can evaluate our reordering methods properly.

We use 240 threads for the Xeon Phi as suggested in [5],
[7]. On the Xeon Phi, we test with non-vectorized code
(referred to as 1×1), as well as all provided vectorization
options, i.e., 1× 8, 2× 4, 4× 2 and 8× 1. We report the
result of the best-performing vectorization option in all
Xeon Phi related tables and figures except Table 5, in which
results of all blocking options are reported separately. The
SL library without using any reordering is selected as a
baseline method, which is referred to as BaseLine (BL). The
performance results are obtained by averaging 5000 SpMVs.

Construction of hypergraph and graph models takes
linear time in the number of nonzeros of matrixA. However,
construction of similarity graphs takes O(|V|2) time, which
is unacceptably high. The construction of similarity graphs
corresponds to the construction of clique-net graph model of
the respective hypergraph model. So we use the randomized
clique-net graph model [8].

For partitioning the graph models, we use MeTiS [10]
with the partitioning objective of minimizing the edge-cut
metric given in (1). For partitioning the hypergraph models,
we use PaToH [8], [11] with the partitioning objective of
minimizing the “connectivity-1” cutsize metric. Note that
minimizing the connectivity metric given in (2) directly
corresponds to minimizing the “connectivity-1” metric be-
cause there is always a constant difference between them.
MeTiS and PaToH are used with default parameters with
the exception of the allowed imbalance ratio, which is set

to 30%. Since these partitioning tools contain randomized
algorithms, we repeat each partitioning instance three times
and report the average results.

For each matrix, the K value given to MeTiS or PaToH
is determined through dividing the storage size (in KB)
reported by the SL library by the L1 cache size of 32 KB.

In the following figures, the performance results are
displayed utilizing performance profiles [12] which is a generic
tool for better comparing many methods over large test
instances. In a performance profile, each method is plotted
as the fraction of test cases that are x-magnitude worse than
the best performing instance of the best performing method.
For example, a point (abscissa = 1.10, ordinate = 0.40) on the
performance plot of a given method means that for 40% of
the test instances, the method performs within a factor of
1.10 of the best result. Hence, the method closest to the top-
left corner is the best method.

7.3 Performance Evaluation on Xeon Phi

7.3.1 Comparison of GP- and HP-based Methods

We compare the performances of the GP-based and
HP-based methods in each locality type of spatial, temporal
and spatiotemporal. In Fig. 8, we present the performance
profiles of the parallel SpMV times for spatial, temporal and
spatiotemporal methods. As seen in Figs. 8a, 8b and 8c,
the HP-based methods perform significantly better than
their GP-based counterparts in each locality type of spa-
tial, temporal and spatiotemporal. These findings can be
attributed to the better capability of hypergraph models in
representing data localities during SpMV operations.

7.3.2 Comparison of HP-based Spatiotemporal Methods

We compare the proposed spatiotemporal methods STH and
THline against three HP-based spatiotemporal methods. The
first two methods, which are described in [13] and [14],
encode the spatial locality primarily and the temporal lo-
cality secondarily, and vice-versa, respectively. The former
and latter methods are referred to as SBD and sHPCN. The
SBD and sHPCN methods can be respectively considered
as the extensions of SH and TH methods, where the nets
are considered as inducing partial orderings on the other
dimension of the matrix (based on uncut- and cut-net
categorization) to secondarily encode temporal and spatial
locality respectively.

The reasoning behind the classification of exploiting
spatial/temporal locality as primary and secondary can be
explained as follows: In hypergraph models, the objective
of minimizing the cutsize directly and closely relates to
clustering vertices with similar net connectivity to the same
parts. However, the partitioning objective of minimizing the
cutsize relates indirectly and hence loosely to clustering nets
with similar vertex connectivity to the same parts as uncut
nets. A similar observation was reported in a different con-
text in [2]. So, partial row or column reordering respectively
induced by the net reordering of SBD or sHPCN loosely
relates to clustering columns or rows with similar sparsity
pattern thus failing to address the secondary objective of
exploiting spatial or temporal locality successfully.

The third method, referred to here as SH+TH, is de-
veloped for the sake of comparison. The SH+TH method
consists of using SH for reordering columns and TH for
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TABLE 3: Properties of test matrices

Number of Nnz’s in a row Nnz’s in a column

MID Matrix Name rows columns nonzeros avg max cov avg max cov

Symmetric matrices

01 144 144,649 144,649 2,148,786 14.86 26 0.18 14.86 26 0.18
02 adaptive 6,815,744 6,815,744 27,248,640 4.00 4 0.01 4.00 4 0.01
03 AS365 3,799,275 3,799,275 22,736,152 5.98 14 0.14 5.98 14 0.14
04 bmw7st 1 141,347 141,347 7,339,667 51.93 435 0.25 51.93 435 0.25
05 ca2010 710,145 710,145 3,489,366 4.91 141 0.59 4.91 141 0.59
06 citationCiteseer 268,495 268,495 2,313,294 8.62 1318 1.89 8.62 1318 1.89
07 coAuthorsCiteseer 227,320 227,320 1,628,268 7.16 1372 1.48 7.16 1372 1.48
08 darcy003 389,874 389,874 2,101,242 5.39 7 0.36 5.39 7 0.36
09 delaunay n18 262,144 262,144 1,572,792 6.00 21 0.22 6.00 21 0.22
10 delaunay n19 524,288 524,288 3,145,646 6.00 21 0.22 6.00 21 0.22
11 F2 71,505 71,505 5,294,285 74.04 345 0.51 74.04 345 0.51
12 G3 circuit 1,585,478 1,585,478 7,660,826 4.83 6 0.13 4.83 6 0.13
13 gupta2 62,064 62,064 4,248,286 68.45 8413 5.20 68.45 8413 5.20
14 hugetrace-00020 16,002,413 16,002,413 47,997,626 3.00 3 0.01 3.00 3 0.01
15 hugetric-00020 7,122,792 7,122,792 21,361,554 3.00 3 0.01 3.00 3 0.01
16 m14b 214,765 214,765 3,358,036 15.64 40 0.20 15.64 40 0.20
17 NACA0015 1,039,183 1,039,183 6,229,636 5.99 10 0.14 5.99 10 0.14
18 netherlands osm 2,216,688 2,216,688 4,882,476 2.20 7 0.26 2.20 7 0.26
19 NLR 4,163,763 4,163,763 24,975,952 6.00 20 0.14 6.00 20 0.14
20 ny2010 350,169 350,169 1,709,544 4.88 61 0.52 4.88 61 0.52
21 pattern1 19,242 19,242 9,323,432 484.54 6028 0.78 484.54 6028 0.78
22 pkustk12 94,653 94,653 7,512,317 79.37 4146 1.87 79.37 4146 1.87
23 vsp bcsstk30 500sep 10in 1Kout 58,348 58,348 4,033,156 69.12 219 0.47 69.12 219 0.47
24 vsp msc10848 300sep 100in 1Kout 21,996 21,996 2,442,056 111.02 722 0.44 111.02 722 0.44

Square nonsymmetric matrices

25 amazon0312 400,727 400,727 3,200,440 7.99 10 0.38 7.99 2747 1.89
26 amazon0505 410,236 410,236 3,356,824 8.18 10 0.38 8.18 2760 1.87
27 amazon0601 403,394 403,394 3,387,388 8.40 10 0.33 8.40 2751 1.82
28 av41092 41,092 41,092 1,683,902 40.98 2135 4.08 40.98 664 2.37
29 circuit5M dc 3,523,317 3,523,317 19,194,193 5.45 27 0.38 5.45 25 0.23
30 flickr 820,878 820,878 9,837,214 11.98 10272 7.32 11.98 8549 5.97
31 heart1 3,557 3,557 1,387,773 390.15 1120 0.32 390.15 1120 0.32
32 laminar duct3D 67,173 67,173 3,833,077 57.06 89 0.66 57.06 89 0.52
33 soc-Slashdot0811 77,360 77,360 905,468 11.70 2508 3.15 11.70 2540 3.18
34 soc-Slashdot0902 82,168 82,168 948,464 11.54 2511 3.20 11.54 2553 3.25
35 TSOPF RS b300 c1 14,538 14,538 1,474,325 101.41 209 1.01 101.41 6902 4.68
36 TSOPF RS b300 c3 42,138 42,138 4,413,449 104.74 209 0.98 104.74 20702 7.99
37 twotone 120,750 120,750 1,224,224 10.14 185 1.48 10.14 188 1.86
38 web-NotreDame 325,729 325,729 1,497,134 4.60 3445 4.67 4.60 10721 8.50
39 web-Stanford 281,903 281,903 2,312,497 8.20 255 1.38 8.20 38606 20.28
40 webbase-1M 1,000,005 1,000,005 3,105,536 3.11 4700 8.16 3.11 28685 11.88
41 wiki-Talk 2,394,385 2,394,385 5,021,410 2.10 100022 47.64 2.10 3311 5.82

Rectangular matrices

42 cont1 l 1,918,399 1,921,596 7,031,999 3.67 5 0.26 3.66 1279998 252.33
43 cont11 l 1,468,599 1,961,394 5,382,999 3.67 5 0.26 2.74 7 0.90
44 dbir2 18,906 45,877 1,158,159 61.26 4950 3.86 25.24 233 1.49
45 GL7d14 171,375 47,271 1,831,183 10.69 24 0.24 38.74 160 0.44
46 GL7d15 460,261 171,375 6,080,381 13.21 38 0.18 35.48 137 0.40
47 GL7d24 21,074 105,054 593,892 28.18 751 0.72 5.65 13 0.22
48 IMDB 428,440 896,308 3,782,463 8.83 1334 1.73 4.22 1590 3.09
49 mesh deform 234,023 9,393 853,829 3.65 4 0.18 90.90 166 0.20
50 neos 479,119 515,905 1,526,794 3.19 29 0.16 2.96 16220 15.57
51 NotreDame actors 392,400 127,823 1,470,404 3.75 646 2.75 11.50 294 1.02
52 nsct 23,003 37,563 697,738 30.33 848 2.54 18.58 628 3.32
53 pds-100 156,243 514,577 1,096,002 7.01 101 1.03 2.13 3 0.18
54 pds-80 129,181 434,580 927,826 7.18 96 0.99 2.13 3 0.18
55 pds-90 142,823 475,448 1,014,136 7.10 96 1.01 2.13 3 0.18
56 rel8 345,688 12,347 821,839 2.38 4 0.82 66.56 121 0.26
57 route 20,894 43,019 206,782 9.90 2781 7.06 4.81 44 1.01
58 sgpf5y6 246,077 312,540 831,976 3.38 61 2.21 2.66 12 0.74
59 Trec14 3,159 15,905 2,872,265 909.23 1837 0.39 180.59 2500 1.71
60 watson 1 201,155 386,992 1,055,093 5.25 93 2.45 2.73 9 0.47

reordering rows. The “+” notation in SH+TH refers to the
fact that the partitioning in each of these two methods
are performed independently so that they do not use the
partitioning results of each other.

Fig. 9 shows the performance profiles that compare
all HP-based spatiotemporal methods, where the detailed
results are presented in Table A.1 in the supplemental
material. As seen in the figure, STH is the clear winner,
followed by THline and SH+TH which display comparable
performance. The significantly better performance obtained
by THline and SH+TH compared to SBD and sHPCN is

expected since both SBD and sHPCN encode one type of
locality primarily while encoding the other type of locality
secondarily. This experimental finding also supports our
claim for reordering based on vertex partitions encode much
better locality than that on cut/uncut net categorization.

7.3.3 Comparison of All Methods

Table 4 displays the averages of parallel SpMV perfor-
mances of the methods in terms of Gflop/s for 60 test
matrices in three categories. Here, SG+TG refers to the graph
counterpart of SH+TH. For each method, the table also
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Fig. 8: Performance profiles for comparing hyper-
graph and graph models on Xeon Phi.
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Fig. 9: Performance profiles for comparing HP-
based spatiotemporal methods on Xeon Phi.

contains the number of best results for per-category matrices
and for all matrices in the bottom of the table. Table 4
shows that we obtain 13 instances that have more than
20 Gflop/s performance through the proposed reordering
methods, whereas there are only 4 instances for the baseline
method that have more than 20 Gflop/s. As also seen in Ta-
bles 4, the proposed SG+TG, STBG, SH+TH, THline and STH
respectively perform the best in 1, 4, 10, 12, and 33 instances.
These results show the superior performance of STH, which
encodes spatial and temporal localities simultaneously.

Table 4 also displays SpMV performances of the methods
averaged over matrices in each category. As seen in the
table, the SH+TH method performs close to STH in the
category of symmetric matrices. This is due to the nature of
symmetric matrices, where SH and TH are exactly the same.
On the other hand, in case of nonsymmetric square matrices
and rectangular matrices, STH performs significantly better
than other methods.

As seen in Table 4, the two-phase method THline does
not outperform SH+TH in case of symmetric matrices. On
the other hand, it performs slightly better in case of non-
symmetric square matrices and rectangular matrices.

Table 4 also shows the importance of using reordering
methods as the STH method achieved 3.4x improvement
for symmetric matrices and 1.6x improvement for other
categories. The importance of simultaneous methods also
arises from the fact that some matrices benefit more from
exploiting spatial locality while other matrices benefit more
from exploiting temporal locality. The simultaneous meth-
ods can benefit from exploiting both localities which leads
to a better performance.

Fig. 10 shows the performance profiles of the SpMV
times for all methods. As seen in the figure, STH, THline

and STBG significantly outperform other methods. In the
figure, STH is a clear winner, while THline is close to, but
slightly outperforms the STBG method.

As seen in Table 4 as well as in Fig. 10, the STH method
is the best method in terms of geometric means (overall and
per-category) and the number of best instances.

7.3.4 Benefit of Exploiting Spatial and Temporal Localities

Exploiting locality in matrices with highly irregular sparsity
patterns might have a huge impact on SpMV performance.
To show this, three matrices are selected from the data set,
where the improvement in performance after reordering
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Fig. 10: Performance profiles of SpMV times on Xeon Phi.

with respect to the baseline is high. Fig. 11a shows the plot
of the sparse matrix 144 which has a very irregular sparsity
pattern. Table 4 shows that the performance on the matrix
(MID=01) improves from 3.09 (by BL) to 5.09 Gflop/s by
exploiting only spatial locality using the SH method, to 7.58
Gflop/s by exploiting only temporal locality using the TH
method, and to 16.78 Gflop/s by exploiting both spatial and
temporal localities using the STH method. Fig. 11b shows
the reordered matrix after applying the STH method.

Fig. 11c shows the plot of the second matrix
delaunay_n18 (MID=09) which is experimentally found
to have good spatial locality properties, but suffers from
poor temporal locality. As seen in Table 4, trying to im-
prove spatial locality alone using the SH method does not
improve the performance. However, exploiting temporal
locality alone has a high effectiveness on the performance,
as it is increased from 3.48 Gflop/s to 12.54 Gflop/s after
reordering the rows with the TH method. When targeting
both localities, the performance increases to 16.34 by the
STH method. Fig. 11d shows the reordered matrix after
applying the STH method.

Fig. 11e shows the plot of the last selected matrix pds-80
(MID=54) which is experimentally found to suffer from
poor spatial locality. As seen in Table 4, reordering us-
ing a temporal method will not improve the performance.
However, reordering the columns to exploit spatial locality
with the SH method improves the performance significantly
from 4.30 Gflop/s to 10.04 Gflop/s. On the other hand,
targeting both localities improves the performance further
to 12.35 Gflop/s when using THline method.
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(a) 144 (b) 144 after STH (c) delaunay n18 (d) delaunay after STH

(e) pds-80 (f) pds-80 after STH

Fig. 11: Plots of sample matrices before and after applying the STH reordering method.

Table 5 shows the geometric means of the Gflop/s
performances obtained by all methods and all vectoriza-
tion options for all matrices in the dataset. In the table,
column ”Best” means the per-instance result of best per-
formed option among all vectorization options as well as no-
vectorization option, while V-Avg. means the per-instance
average of all vectorization options, not including 1×1.
As seen in the table, STH outperforms other methods in
all vectorization options. An important observation we can
retrieve from Table 5 is the importance of the one-phase spa-
tiotemporal methods in utilizing vectorization. As the table
shows, with no reordering or reordering for only one type
of locality (either spatial or temporal), non-vectorized runs
might outperform other vectorization options. However, in
one-phase spatiotemporal methods, vectorized runs always
outperform non-vectorized runs. The impact of reordering
on vectorization is discussed further in Section 7.3.5.

7.3.5 The Impact of Reordering on Vectorization

Vectorization might be very beneficial in improving the
performance of SpMV on the Xeon Phi co-processor. How-
ever, it is highly dependent on the sparsity pattern of the
input matrix, meaning that if the sparsity pattern is not
favoured by any of the vectorization options or the matrix
has a very irregular sparsity pattern, the vectorization might
not improve or even degrade the performance of SpMV.
Our findings show that the reordering methods have an
important role in utilizing the vectorized SpMV algorithm.

We use Table 5 to show the importance of reordering
for utilizing vectorization. In the table, the baseline method
performs worse in case of 1×8 option compared to no-
vectorization option, i.e., 1×1. If we look at the vectorization
performances obtained by methods that target only one
type of locality, i.e., SG, TG, SH and TH, we can see that
some vectorization options might perform worse than the
no-vectorization option as follows: If the method exploits
spatial locality, then the blocking option that prefers extreme
temporal locality (8×1 in this case) might perform worse
than the 1×1 option. On the other hand, if the method
exploits temporal locality, then the blocking option that
prefers extreme spatial locality (1×8 in this case ) might
perform worse than the 1×1 option.

Regarding the spatiotemporal methods that target both

localities (e.g., STBG, STH and THline), Table 5 shows that
using any blocking option always performs better than the
1×1 option. It also shows that the spatiotemporal methods
perform the best in terms of the average of all vectorization
options (V-Avg. column).

7.4 Performance Evaluation on Xeon Processor

Fig. 12a displays the performance profiles of SpMV times
of all methods on the Xeon processor. Table A.2 in the sup-
plemental material shows the detailed performances results
of all methods on the Xeon processor in terms of Gflop/s.
Both Fig. 12a and Table A.2 show the superiority of STH
and STBG methods over the others. Recall that the THline

performs better than the STBG method on the Xeon Phi.
However, as no vectorization is used on the Xeon, THline

performs worse because it mostly utilizes vectorization to
perform well as discussed in Section 7.3.5.

We also use likwid [15], which enables counting data
transfers in a multi-threaded shared memory system, to
measure L2 cache misses on the Xeon server during SpMV
operation using all methods. Fig. 12b shows the perfor-
mance profiles for cache misses. Table A.3 in the supple-
mental material contains detailed results of the number of
cache misses normalized with respect to those of the BL
method averaged over each category and at the bottom,
for all matrices in the dataset. The comparison of Figs. 12b
and 12a shows that the methods aiming at reducing cache
misses effectively reduce the SpMV runtime.

7.5 Integration into Iterative Methods

Iterative symmetric linear solvers (e.g., CG) contain re-
peated SpMV operations that involve the same symmetric
matrix. In such solvers, the input vector (x-vector) of the
next iteration is obtained from the output vector (y-vector)
of the current iteration via linear vector operations. Efficient
implementation of these linear vector operations necessi-
tates conformal partitioning/ordering of x- and y-vector
entries. So for such solvers, after each SpMV operation, the
y-vector entries should be reordered to the same order of
the x-vector entries to establish conformal x-y ordering.

Iterative nonsymmetric linear solvers (e.g., CGNE,
CGNR and QMR [16], [17], [18]) contain repeated SpMV
and SpMTV (matrix-transpose-vector multiply) operations
that involve the same nonsymmetric square matrix. In these
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TABLE 4: Performance results (in Gflop/s) on Xeon Phi

Graphs Hypergraphs

MID BL SG TG SG+TG STBG SH TH SH+TH THline STH

Symmetric matrices

01 3.09 5.04 7.47 15.62 16.15 5.09 7.58 16.93 16.09 16.78
02 4.89 2.20 4.97 12.77 13.12 2.19 4.95 12.89 13.28 13.73
03 1.22 1.81 3.25 13.62 13.29 1.84 3.26 13.54 13.87 13.69
04 21.17 18.89 14.72 7.68 24.46 22.66 23.37 24.83 25.21 25.24
05 3.33 4.42 5.98 10.10 10.50 4.53 5.98 10.52 10.47 10.44
06 2.27 3.64 3.02 4.56 5.66 3.56 3.27 5.49 5.08 5.73
07 3.10 3.04 5.20 6.76 7.98 3.06 5.15 7.38 6.71 8.38
08 2.82 2.80 8.31 17.07 18.46 2.76 8.44 18.05 17.40 18.10
09 3.48 3.49 12.75 16.10 16.17 3.47 12.54 16.08 16.27 16.34
10 2.56 2.80 10.98 13.20 13.49 2.78 10.98 13.55 13.45 13.47
11 14.70 13.31 10.62 8.29 24.10 19.23 20.83 24.60 24.71 24.82
12 5.54 5.47 10.30 12.94 12.93 5.44 10.06 12.77 13.18 13.04
13 15.37 8.29 11.47 7.89 10.27 13.24 12.53 15.98 15.28 15.98
14 1.42 1.84 2.70 9.03 10.46 1.85 2.73 9.59 10.33 10.64
15 1.39 1.69 2.72 10.43 10.79 1.69 2.70 10.57 10.95 11.02
16 2.98 4.90 7.47 15.78 15.23 4.94 7.55 15.67 15.33 15.67
17 1.97 2.72 5.11 13.01 12.86 2.74 5.04 13.12 13.26 13.13
18 3.73 3.40 6.33 8.82 9.26 3.40 6.23 9.09 3.37 9.6
19 1.25 1.88 3.20 13.54 13.22 1.89 3.24 13.46 13.8 13.67
20 5.29 6.46 8.02 11.56 11.91 6.36 8.21 12.03 11.68 11.87
21 12.69 13.61 13.04 13.78 19.44 14.68 16.59 18.64 15.09 20.29
22 19.35 11.38 13.62 5.17 21.30 21.43 20.94 22.40 22.93 23.63
23 6.70 12.11 5.14 10.70 23.64 15.37 10.78 23.52 24.73 24.61
24 10.99 12.05 11.01 12.01 28.88 22.40 16.53 30.34 29.83 30.96

Avg. 4.29 4.67 6.84 10.68 14.10 5.21 7.80 14.33 13.60 14.75
# bests 0 0 0 1 1 0 0 5 5 13

Square nonsymmetric matrices

25 2.70 3.64 4.40 6.57 7.17 3.61 4.17 6.30 5.55 7.31
26 2.84 3.79 4.53 6.70 7.01 3.56 4.54 7.05 5.52 7.27
27 2.81 3.93 4.59 6.45 6.30 3.83 4.40 6.71 5.36 7.13
28 15.59 19.25 15.57 20.76 15.66 21.72 17.35 20.01 20.99 21.23
29 5.63 2.43 7.77 12.56 14.24 2.48 7.32 12.10 14.26 14.62
30 1.82 2.02 2.48 2.42 3.34 2.01 2.27 2.80 4.32 4.01
31 36.17 34.31 35.74 33.50 32.07 36.64 36.38 36.37 37.09 36.72
32 21.58 14.34 14.35 12.42 23.69 14.73 23.16 25.12 24.62 24.86
33 4.42 4.23 5.05 4.77 5.39 4.53 4.51 5.22 5.80 6.14
34 4.82 4.16 5.68 5.55 5.19 4.45 4.25 4.80 5.72 6.58
35 27.04 19.37 30.93 23.49 26.71 24.03 33.67 32.74 30.06 34.44
36 19.98 12.05 22.17 15.44 24.61 16.73 26.69 27.04 26.16 26.71
37 15.16 15.46 14.40 14.12 15.25 15.34 16.15 15.55 16.32 16.7
38 6.81 6.24 6.75 6.11 9.27 6.85 5.31 6.20 8.36 9.26
39 2.90 4.78 3.70 7.99 10.55 4.93 3.38 9.87 10.57 10.65
40 4.56 4.35 2.70 2.48 6.44 4.49 4.89 5.22 6.62 6.96
41 1.17 0.86 1.15 0.79 1.25 1.54 1.04 1.50 1.62 1.97

Avg. 6.39 6.02 7.12 7.61 9.47 6.59 7.33 9.33 9.86 10.79
# bests 0 0 0 0 1 1 0 2 2 11

Rectangular matrices

42 9.47 5.88 8.58 9.51 10.03 6.81 8.42 10.73 10.84 11.71
43 9.11 5.98 7.37 10.98 12.48 6.16 7.29 10.94 11.51 12.79
44 8.35 6.36 6.67 7.88 9.14 7.84 6.47 9.75 10.47 14.14
45 4.79 4.93 5.35 5.71 5.93 5.29 5.33 6.26 5.81 6.25
46 2.46 2.78 2.76 3.51 3.41 2.82 3.26 4.36 3.51 3.76
47 3.14 3.73 4.07 4.69 5.12 3.68 3.84 5.10 3.67 5.65
48 2.03 2.37 1.60 2.22 3.25 2.71 1.14 2.63 3.50 3.91
49 14.95 14.79 15.13 15.29 23.74 14.92 22.58 23.61 23.41 23.56
50 12.54 6.64 6.10 5.23 12.50 8.01 7.97 9.98 12.56 14.56
51 3.58 3.72 4.16 4.25 4.97 4.05 3.92 4.74 5.31 5.10
52 11.44 11.56 11.04 13.27 14.33 13.12 8.21 12.26 17.27 17.83
53 3.56 9.40 3.68 10.47 10.68 9.82 3.33 10.57 11.82 11.20
54 4.30 10.73 3.42 10.66 11.52 10.04 3.28 11.15 12.35 11.33
55 3.96 10.11 3.53 10.46 11.31 10.17 3.38 11.29 12.02 11.27
56 15.61 16.21 13.66 13.65 15.26 16.27 15.84 16.91 16.03 17.23
57 4.86 9.81 4.74 8.96 7.80 10.12 4.18 10.14 9.87 9.47
58 8.90 8.09 7.76 7.40 10.10 9.02 8.60 9.86 11.15 11.25
59 19.08 14.67 18.95 14.70 15.46 20.00 18.47 19.68 20.36 20.34
60 10.82 10.21 11.23 11.52 14.82 11.43 11.04 13.88 13.92 14.69

Avg. 6.58 7.26 6.09 7.98 9.41 7.87 6.07 9.47 9.89 10.54
# bests 0 0 0 0 2 0 0 3 5 9

Overall

Avg. 5.50 5.77 6.67 8.85 11.08 6.35 7.08 11.13 11.22 12.13
# bests 0 0 0 1 4 1 0 10 12 33

TABLE 5: Average performance results (in Gflop/s) for all
methods and all possible blocking sizes on Xeon Phi

Method 1x1 1x8 2x4 4x2 8x1 Best Vec-Avg

BL 4.12 3.70 4.57 4.70 4.36 5.50 4.38

Graph Methods

SG 4.55 4.69 5.16 5.01 4.46 5.77 4.88
TG 5.11 4.82 5.74 5.86 5.37 6.67 5.50
SG+TG 6.26 7.10 8.15 7.90 7.09 8.85 7.63

STG 6.85 8.45 9.92 9.67 8.36 11.08 9.26

Hypergraph Methods

SH 4.79 5.14 5.62 5.42 4.75 6.35 5.30
TH 5.06 4.77 6.02 6.41 6.01 7.08 5.85
SH+TH 6.84 8.61 10.02 9.95 8.73 11.13 9.46
SH+THline 6.85 8.61 10.28 9.98 8.58 11.22 9.57
STH 7.11 9.30 11.00 10.85 9.14 12.13 10.19
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Fig. 12: Performance profiles for the Xeon processor.

methods, there is no computational dependency between
the input and output vectors of the individual SpMV opera-
tions. This feature naturally holds for repeated SpMV opera-
tions that involve the same rectangular matrix in several ap-
plications (e.g., LSQR method [19] used for solving the least
squares problem and interior point method used for the LP
problems via iterative solution of normal equations) since
input and output vectors are of different dimensions. So, for
the methods that involve repeated SpMV of nonsymmetric
and rectangular matrices, there is no need for reordering the
y-vector entries after the SpMV.

In accordance with the above discussion, we consider the
y-to-x-vector reordering only for the symmetric matrices.
All our methods require y-to-x reordering for conformal x-y
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ordering except SG+TG and SH+TH. This is because, for
symmetric matrices, the similarity graph models in the SG
and TG are exactly the same and the hypergraph models in
SH and TH are also exactly the same. So, we can easily apply
the conformal x-y (row-column) reordering by utilizing the
partition obtained by either SG or TG in SG+TG and by
either SH or TH in SH+TH. Here, we propose and develop
a scheme for reducing the y-to-x reordering overhead in
the powerful STH method, whereas the same scheme can
easily be utilized in STBG. Recall that in the row/column
reorderings obtained by the discussed partitioning methods,
the rows/columns corresponding to vertices in a part are
reordered arbitrarily. In the proposed scheme, in each part
of a partition, for each pair of vertices that represent the
row and column with the same index, the respective y-
and x-vector entries are ordered conformably, so only non-
conformal y-vector entries need to be reordered.

Experimental results on the symmetric matrix dataset
show that, the STH method that utilizes the proposed y-to-x
reordering scheme performs much better (22% on average)
than the STH method that utilizes the arbitrary y-to-x re-
ordering scheme. Despite this performance improvement,
STH utilizing the proposed reordering scheme performs
worse than SH+TH (13.28 vs 15.48 Gflop/s on average),
whereas it performs better than SH+TH only for very sparse
matrices (e.g., ca2010, delaunay_18, and ny2010). We
refer the reader to the supplemental material for more
detailed discussion and results.

8 RELATED WORK

Reordering is used in the literature to improve data locality
for irregular applications such as molecular dynamics [20],
[21], [22] and sparse linear algebra [13], [14], [23], [27],
[28], [29], [31]. Al-Furaih and Ranka [20] use MeTiS and
a breadth-first-search (BFS) based reordering algorithm to
reorder data elements for unstructured iterative applica-
tions. Han and Tseng [21] propose a low-overhead graph
partitioning algorithm (Gpart) for data reordering (spatial
locality).

For irregular applications, Strout and Hovland [22] pro-
pose graph and hypergraph models for data and itera-
tion reordering. They use different reordering heuristics to
traverse the graph or hypergraph models including Con-
secutive Packing (CPACK) [24] and Breadth-First Search.
They also use Gpart [25] to partition the graph models and
PaToH [11] to partition the hypergraph models.

On exploiting locality in sequential SpMV, Temam and
Jalby [26] investigate effects of metrics based on matrix
properties, cache size and line size on the number of cache
misses. They propose a probabilistic model to estimate the
number of cache misses and hits. They conclude that data
hit ratio is the lowest while accessing x-vector entries and
can be increased via reordering techniques. In our work, we
also target reducing misses due to accessing x-vector entries
and we report the actual number of cache misses (Table A.3
in the supplemental material) instead of estimations.

For sequential SpMV, Toledo [27] uses several band-
width reduction techniques including Cuthill McKee (CM),
Reversed CM (RCM) and top-down graph partitioning for
reordering matrices to reduce cache misses. White and Sa-
dayappan [28] also use the top-down graph partitioning tool

MeTiS [10] to reorder sparse matrices. Pinar and Heath [29]
use a spatial graph model and a formulation of traveling
salesperson problem (TSP) for obtaining 1×2 blocks to halve
the indexing overhead. Yzelman and Bisseling [13] propose
a row-net hypergraph model to exploit spatial locality pri-
marily and temporal locality secondarily. Akbudak et al. [14]
propose a column-net hypergraph model to exploit tempo-
ral locality primarily and spatial locality secondarily. One-
dimensional matrix partitioning is used in all of the above-
mentioned reordering methods that are based on graph
and hypergraph partitioning. Yzelman and Bisseling [23]
and Akbudak et al. [14] propose reordering methods based
on two-dimensional matrix partitioning. The DSBD method
proposed in [23] permutes the matrix into doubly sepa-
rated block diagonal form, whereas the sHPeRCN method
proposed in [14] permutes the matrix into doubly-bordered
block diagonal (DB) form, both through partitioning a fine-
grain hypergraph model of which size is significantly larger
than our proposed models.

On exploiting locality in parallel SpMV on
shared-memory architectures, Williams et al. [30] propose
17 different optimizations in three categories (i.e., code,
data structure and parallelism) for three different CPU
architectures. These optimizations include but are not
limited to cache blocking, using SIMD instructions,
software prefetching, auto-tuning and exploiting process &
memory affinity.

Yzelman and Roose in [6] combine several matrix re-
ordering methods based on hypergraph partitioning and
space filling curves to improve locality on shared memory
architectures. RCM is used in [31] for bandwidth reduc-
tion of sparse matrix A on the Xeon Phi coprocessor. For
sparse matrix-vector and matrix-transpose-vector multipli-
cation (SpMMTV), which contains two consecutive SpMVs,
Karsavuran et al. [32] utilize hypergraph models for exploit-
ing temporal locality on Xeon Phi.

9 CONCLUSION

We proposed bipartite and hypergraph partitioning based
methods that aim at exploiting spatial and temporal local-
ities simultaneously for efficient parallelization of SpMV
operations on many-core architectures. The experimental
results on the Xeon Phi and Xeon processors showed that
the proposed spatiotemporal methods for simultaneous row
and column reordering significantly performed better than
the methods that exploit either spatial or temporal locality.
The experimental results also showed that the proposed
spatiotemporal methods significantly benefit more from
vectorization compared to the other methods. Among the
proposed methods, hypergraph-based methods were found
to produce better SpMV performance with respect to their
bipartite graph counterparts.
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