
1

Scalable Unsupervised ML: Latency Hiding in
Distributed Sparse Tensor Decomposition

Nabil Abubaker, M. Ozan Karsavuran, and Cevdet Aykanat

Abstract—Latency overhead in distributed-memory parallel CPD-ALS scales with the number of processors, limiting the scalability of
computing CPD of large irregularly sparse tensors. This overhead comes in the form of sparse reduce and expand operations
performed on factor-matrix rows via point-to-point messages. We propose to hide the latency overhead through embedding all of the
point-to-point messages incurred by the sparse reduce and expand into dense collective operations which already exist in the
CPD-ALS. The conventional parallel CPD-ALS algorithm is not amenable for embedding so we propose a computation/communication
rearrangement to enable the embedding. We embed the sparse expand and reduce into a hypercube-based ALL-REDUCE operation to
limit the latency overhead to O(log2 K) for a K-processor system. The embedding comes with the cost of increased bandwidth
overhead due to the multi-hop routing of factor-matrix rows during the embedded-ALL-REDUCE. We propose an embedding scheme
that takes advantage of the expand/reduce properties to reduce this overhead. Furthermore, we propose a novel recursive
bipartitioning framework that enables simultaneous hypergraph partitioning and subhypergraph-to-subhypercube mapping to achieve
subtensor-to-processor assignment with the objective of reducing the bandwidth overhead during the embedded-ALL-REDUCE. We
also propose a bin-packing-based algorithm for factor-matrix row to processor assignment aiming at reducing processors’ maximum
send and receive volumes during the embedded-ALL-REDUCE. Experiments on up to 4096 processors show that the proposed
framework scales significantly better than the state-of-the-art point-to-point method.

Index Terms—sparse tensor, tensor decomposition, CANDECOMP/PARAFAC, canonical polyadic decomposition, latency hiding,
embedded communication, communication cost, concurrent communication, recursive bipartitioning, hypergraph partitioning

F

1 INTRODUCTION

T ENSOR decomposition has emerged as a successful tool
for analyzing multi-way data. Canonical polyadic (or

CANDECOMP/PARAFAC) decomposition (CPD) is one of
the popular tensor decompositions that extends singular
value decomposition to tensors and is a fundamental tool
in unsupervised learning setting [1], [2], [3], [4]. It has
also become an integral part of different machine learning
fields either as a method (e.g., regression [5], supervised
classification [6]), or as a support tool (e.g., compression for
Deep Learning [7], [8], [9]) and more [10]. CPD decomposes
a tensor into its constituent rank-one tensors thus revealing
latent factors to be used for data analysis.

Several algorithms exist for calculating the CPD for a
given decomposition rank R, among which alternating least
squares (ALS) is the most popular and used in practice.
Matricized Tensor Times Khatri-Rao Product (MTTKRP)
operation, which is performed to compute decomposition
factor matrix for each mode, is the bottleneck operation in
CPD-ALS. In distributed-memory parallel CPD-ALS, each
MTTKRP operation needs sparse reduce and expand com-
munications as well as two dense reduce communications.
The sparse reduce/expand are irregular due to the sparsity
pattern of the tensor and they are performed with point-to-
point (P2P) messages. On the other hand, the dense reduce
communications involve data of sizes R and R2 which are
required by all processors and thus are performed using the
collective ALL-REDUCE operation from the MPI primitives.

• Authors are with the Department of Computer Engineering,
Bilkent University, Ankara, Turkey.

The bandwidth overhead of MTTKRP scales with both
tensor size and decomposition rank, whereas latency over-
head increases with increasing number of processors as well
as with increasing irregularity in the sparsity pattern of the
tensor. That is, CPD-ALS becomes latency bound for small
decomposition rank values. Although current distributed-
memory parallel CPD-ALS algorithms, which utilize P2P
communication scheme [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], scale well up to a certain number of pro-
cessors, these algorithms fail to scale after some number of
processors. We empirically find this number to be around
512–1024 processors as also reported in [12], [19]. Thus,
optimizing the latency overhead is a key point for scaling
CPD-ALS for large number of processors.

In this work, we propose hiding the latency overhead
of sparse expand and reduce operations of CPD-ALS by
embedding them into ALL-REDUCE. Although CPD-ALS
has an ALL-REDUCE for each sparse expand and reduce
communication, it is not possible to embed each sparse
expand/reduce due to the dependencies between the sparse
operations and ALL-REDUCE. We propose a novel compu-
tation/communication rearrangement scheme of the CPD-
ALS that removes the dependencies and enables embed-
ding each of the sparse expand/reduce operations into an
ALL-REDUCE.

We use the hypercube-based ALL-REDUCE which utilize
the E-cube routing for embedding and we denote the em-
bedding scheme by EMB hereafter. The utilized hypercube
topology is virtual and transparent to the actual network
topology of the target system. In the naive implementa-
tion of EMB, each individual P2P message of sparse ex-
pand/reduce operation is considered separately. This may

2

lead to multiple copies of the same expanded/reduced
factor-matrix row be in the same message between two pro-
cessors during the embedded-ALL-REDUCE. Therefore, we
propose an expand and reduce aware embedding in which
each message contains only one copy of a factor-matrix row
in each step of ALL-REDUCE. We also extend the commu-
nication duality between sparse reduce and expand oper-
ations into EMB by proposing to use increasing dimension
E-cube routing during the expand-embedded-ALL-REDUCE,
while using decreasing dimension E-cube routing during
reduce-embedded-ALL-REDUCE, or vice versa.

The proposed EMB totally avoids the latency overhead
associated with the sparse expand and reduce operations
and reduces both maximum and average number of mes-
sages handled by a processor to 2 log2K for each MTTKRP
for a K-processor system independent of the sparsity pat-
tern of the tensor. The only trade-off between the proposed
EMB and conventional P2P schemes is the increase in the
communication volume incurred by embedding the P2P
communications into the ALL-REDUCE communications.

In order to model the communication requirement of
EMB, we define a concurrent communication cost metric
which counts how many times each shared factor-matrix
row is concurrently communicated along hypercube dimen-
sions during the E-cube routing. Then we propose a novel
recursive bipartitioning (RB) framework that enables simul-
taneous hypergraph partitioning (HP) and subhypergraph-
to-subhypercube mapping to achieve task-to-processor as-
signment which encodes minimizing the concurrent com-
munication volume metric. In this HP model, we propose
and use sibling subnet removal and net-anchoring schemes
at each level of RB. We also propose a novel bin-packing
adaptation for the factor-matrix row to processor assign-
ment in order to minimize the maximum volume handled
by a processor during both expand-embedded and reduce-
embedded ALL-REDUCE operations. The proposed exten-
sion of duality to EMB enables the proposed bin-packing to
encode the minimization of maximum volume for only one
sparse embedding which holds for the other.

Experimental results with ten tensors on up to 4096
processors show the validity of the proposed models and
methods. These results show that EMB scales well up to
4096 processors, whereas state-of-the-art P2P scales down
after 1024 processors.

The rest of the paper is organized as follows: Sec. 2
contains the background material. The proposed rearrange-
ment scheme that enables embedding is discussed in Sec. 3.
Sec. 4 presents the proposed embedding scheme. The pro-
posed RB-based HP model for task-to-processor assignment
is described in Sec. 5. Sec. 6 displays and discusses the
experimental results. The related work is given in Sec. 7.
Finally, Sec. 8 concludes the paper.

2 BACKGROUND

2.1 Tensors, Notations and CPD

A tensor is denoted by calligraphic (X) while matrices by
bold capital (U) letters. An M -mode tensor has M dimen-
sions I1, I2, · · · , IM and can be unfolded into a matrix shape
along one of its modes. This is called matricization and a

matricized tensor is of size Im× I1 · · · Im−1Im+1 · · · IM and
denoted by X(m) where m ∈ [1..M].

The CPD decouples a tensor into R rank-1 components
as X ≈ ∑R

i=1 Xi, where rank-1 component Xi is the outer
product of M vectors u(1)

i ◦ u
(2)
i ◦ · · · ◦ u

(M)
i . The R vectors

along mode m are combined to form a factor matrix U(m) ∈
RIm×F along mode m. Here, R is called the decomposition
rank. A row in U(m) is referred to as rmi . When the mode of
the tensor is irrelevant to the discussion, we use ri to refer
to a row in a factor matrix along any mode.

The goal of an algorithm computing the CPD is to find
the best approximation of a tensor X using R components
that minimizes a norm of X −∑R

i=1 λiXi. Here, the vectors
used to construct Xi are normalized to length 1, and the
value λi is used as a scaling factor to the normalized Xi

rank-1 component tensor. The matricized tensor along mode
m can be approximated as the product U(m)(�i6=mU(i))>

where � denotes a Khatri-Rao product. Using ALS, U(m)

is calculated by fixing the other M−1 factor matrices and
solving for U(m). The formulation to compute U(m) can be
given as X(m)(�i6=mU(i))(∗i 6=mU(i)>U(i))−1, where ∗ de-
notes the Hadamard product. The term X(m)(�i6=mU(i)) is
the MTTKRP operation. We refer the reader to the excellent
survey by Kolda and Bader [21] for a more comprehensive
coverage of the CPD and its computation.

2.2 Parallel CPD-ALS
We adopt nonzero-based parallelization of CPD-ALS. In
this parallelization, tensor nonzeros are distributed among
processors and processors locally compute (partial) results
for factor matrices using those nonzeros according to the
owner-computes rule. For processor pk, the factor matrix
rows are classified into three categories according to the
tensor nonzeros distribution as follows: Factor-matrix row
ri is said to be local if the nonzeros that contribute to its
computation reside in pk. ri is said to be local-shared if the
nonzeros that contribute to its computation reside in a set of
sharing processors Ŝi ⊆ P, |Ŝi| > 1 ∧ pk ∈ Ŝi, and the
processor responsible for holding the final value of ri is
pk. In such case, pk is called the owner of ri and denoted
by owner(ri). We use Si = Ŝi \ owner(ri) to identify the
set of sharing processors without the owner. A local factor
matrix that contains local and local-shared rows is denoted
by U

(m)
k . ri is said to be nonlocal if pk has one or more

nonzeros that contribute to its computation but pk is not its
owner. A local factor matrix that contains U

(m)
k in addition

to nonlocal rows is distinguished by the hat as Û(m)
k .

We use 3-mode tensors here and in Sec. 3 for a conve-
nient presentation. The discussions easily extend to higher
dimensional tensors (i.e., M > 3). Algorithm 1 describes
the parallel CPD-ALS for 3-mode tensors. In the algorithm,
A,B and C respectively represent U(1),U(2) and U(3). The
communication requirement in this algorithm is detailed
for updating A per processor pk as follows. After the local
MTTKRP (line 3), partial results of local-shared factor matrix
rows are received while partial results of nonlocal rows are
sent to their owner processors. The received partial results
are reduced using an associative operation to form the up-
to-date local-shared rows. This communication operation is
referred to as sparse reduce. Using the up-to-date local and

3

Algorithm 1 Parallel CPD-ALS (X) for 3-mode Tensors
1: Randomly initialize factor matrices A, B, and C
2: while not converged do
3: Â′k←X

(1)
k (B̂k � Ĉk) . MTTKRP

4: Sparse REDUCE on shared A-matrix rows
5: Ak←A′k(C>C∗B>B)−1

6: ALL-REDUCE to normalize cols of A into λ
7: Sparse EXPAND on shared A-matrix rows
8: ALL-REDUCE to compute A>A
9: B̂′k←X

(2)
k (Âk � Ĉk) . MTTKRP

10: Sparse REDUCE on shared B̂-matrix rows
11: Bk←B′k(C>C∗A>A)−1

12: ALL-REDUCE to normalize cols of B into λ
13: Sparse EXPAND on shared B-matrix rows
14: ALL-REDUCE to compute B>B
15: Ĉ′k←X

(3)
k (Âk � B̂k) . MTTKRP

16: Sparse REDUCE on shared Ĉ-matrix rows
17: Ck←C′k(B>B∗A>A)−1

18: ALL-REDUCE to normalize cols of C into λ
19: Sparse EXPAND on shared C-matrix rows
20: ALL-REDUCE to compute C>C
21: return Jλ;A,B,CK

local-shared factor matrix values, the product in line 5 can
be computed locally. Then, column normalization requires
computing λ that depends on all factor matrix columns
through ALL-REDUCE in line 6. The normalized local-shared
row ri is needed by the processors in Si for the computation
of the factor matrix along the next tensor mode. Therefore,
the local-shared rows are sent (expanded) to and the nonlo-
cal rows are received from their respective owner processors
(line 7). This operation is referred to as sparse expand. Finally,
the partial A>A product can be computed locally using
local and local-shared rows and an ALL-REDUCE operation
is used for computing the final product (line 8).

2.3 Hypergraph Partitioning (HP) Problem

A hypergraph H=(V,N) is defined as the set V of vertices
and the set N of nets. Each net n connects a subset of
vertices denoted by Pins(n). Each vertex v is assigned a
weight and each net n is assigned a cost c(n).

Let Π(H)={V1,V2, . . . ,VK} denote a K-way vertex
partition ofH. The weight W (Vk) of part Vk in Π is defined
as the sum of the weights of the vertices in Vk. Π(H) satisfies
the partitioning constraint if W (Vk) ≤Wavg(1 + ε) for each
part Vk in Π, for a given maximum allowed imbalance ratio
ε. Here Wavg denotes the average part weight.

In a given partition Π(H), net n is said to connect part Vk
if it connects at least one vertex in Vk. The connectivity set of
net n, Con(n), is defined as the set of parts connected by n.
The connectivity of n, con(n), denotes the number of parts
connected by n. Net n is said to be cut if con(n) > 1, and
uncut otherwise. Then the connectivity cutsize is defined as
cutsize(Π) =

∑
n∈N (con(n) − 1)c(n). In HP, the partition-

ing objective is to minimize the cutsize while maintaining
the partitioning constraint. In HP with fixed vertices, part
assignment of some vertices are given priori to partitioning.

Algorithm 2 Rearranged Parallel CPD-ALS (X) for 3-mode
Tensors

1: Randomly initialize factor matrices A, B, and C
2: while not converged do
3: Â′k←X

(1)
k (B̂k � Ĉk) . MTTKRP

4: Sparse REDUCE on shared A-matrix rows
5: ALL-REDUCE to compute C>C

6: Ak←A′k(C>C∗B>B)−1

7: λ′c ← 〈Ak(:, c),Ak(:, c)〉, ∀c ∈ [1..R]

8: ALL-REDUCE to compute λ′

9: Sparse EXPAND on shared A-matrix rows
10: λr ←

√
λ′c, ∀c ∈ [1..R]

11: Âk(:, c)← Âk(:, c)/λc, ∀c ∈ [1..R]

12: B̂′k←X
(2)
k (Âk � Ĉk) . MTTKRP

13: Sparse REDUCE on shared B-matrix rows
14: ALL-REDUCE to compute A>A

15: Bk←B′k(C>C∗A>A)−1

16: λ′c ← 〈Bk(:, c), B̂k(:, c)〉, ∀c ∈ [1..R]

17: ALL-REDUCE to compute λ′

18: Sparse EXPAND on shared B-matrix rows
19: λc ←

√
λ′c, ∀c ∈ [1..R]

20: B̂k(:, c)← B̂k(:, c)/λc, ∀c ∈ [1..R]

21: Ĉ′k←X
(3)
k (Âk � B̂k) . MTTKRP

22: Sparse REDUCE on shared C-matrix rows
23: ALL-REDUCE to compute B>B

24: Ck←C′k(B>B∗A>A)−1

25: λ′c ← 〈Ĉk(:, c), Ĉk(:, c)〉, ∀c ∈ [1..R]

26: ALL-REDUCE to compute λ′

27: Sparse EXPAND on shared C-matrix rows
28: λc ←

√
λ′c, ∀c ∈ [1..R]

29: Ĉk(:, c)← Ĉk(:, c)/λc, ∀c ∈ [1..R]
30: return Jλ;A,B,CK

3 REARRANGEMENT OF PARALLEL CPD-ALS TO
ENABLE EMBEDDING

In the parallel CPD-ALS shown in Algorithm 1, there are
two sparse reduce and expand operations per tensor mode
to satisfy the computational requirement of the MTTKRP
operation. The dual sparse reduce and expand operations
(respectively in lines 4 and 7) are performed to complete
the computation of local and local-shared A-matrix rows.
Similarly, the dual sparse reduce and expand in lines 10,
13 and lines 16, 19 do so respectively for B- and C-matrix
rows. Furthermore, there are two ALL-REDUCE operations
attached with the computation of factor matrices along
each mode. Despite having an ALL-REDUCE for each sparse
expand/reduce, it is not possible to embed each sparse ex-
pand/reduce in the current form of Algorithm 1. This is due
to the dependencies of the two ALL-REDUCE operations in
lines 6 and 8 to the sparse reduce in line 4. That is, the sparse
reduce cannot be embedded into the ALL-REDUCE in line 6
because the Ak rows, which are computed in line 5, are
required for the computation of λ. Furthermore, the sparse
expand in line 7 cannot be embedded into the ALL-REDUCE
in line 6 because distributed column normalization need
to be performed before the expand. On the other hand,

4

the sparse expand can be embedded into the ALL-REDUCE
in line 8. Although embedding the sparse expand alone
is important, it is insufficient for hiding latency since the
sparse reduce, performed as P2P, will still be a bottleneck
due to the high number of messages.

We propose to rearrange the computation and commu-
nication steps in Algorithm 1 to enable the embedding of all
sparse expand/reduce operations without any dependency
issues. We highlight two important observations that facili-
tate the rearrangements for successful embedding.

First observation: It is possible to expand non-
normalized Ak-matrix rows just after the operation in
line 5, and then normalize Âk-matrix rows. In other words,
instead of expanding normalized local-shared Ak rows,
which requires the λ vector to be ready in advance, the
non-normalized local-shared Ak rows are expanded while
computing global λ using ALL-REDUCE. The extra cost here
is that each processor will take the responsibility of nor-
malizing nonlocal rows in addition to local and local-shared
rows. With this observation the dependency between the
ALL-REDUCE (line 6) and the sparse expand (line 7) can be
removed, allowing the latter operation to be embedded into
the former. The same argument applies to the normalization
of B- and C-matrix columns in lines 12 and 18, respectively.

Second observation: The A>A product (line 8 of Al-
gorithm 1) is not required until the operation in line 11.
The associated ALL-REDUCE neither has dependency to the
sparse expand in line 7 nor to the sparse reduce in line
10, thus it can be used to embed the sparse reduce of the
next mode. Similar discussion holds for the ALL-REDUCE
associated with B>B. The C>C product (line 20) is not
required until the operation in line 5 of the next iteration
The associated ALL-REDUCE neither has dependency to
the sparse expand in line 19 nor to the sparse reduce in
line 4 of the next iteration, and therefore it can be placed
anywhere between line 19 of the current iteration to before
the operation in line 5 of the next iteration. This inter-mode
and inter-iteration rearrangement is similar to the software
pipelining used in compiler design and operating systems.

Algorithm 2 shows the rearranged version of Algo-
rithm 1. Lines 7, 8, 10, 11 of Algorithm 2 realize the column
normalization of matrix A, performed in line 6 of Algo-
rithm 1, utilizing the first observation. In a similar way,
lines 16, 17, 19, 20 and 25, 26, 28, 29 realize the column
normalization of B and C, respectively. The ALL-REDUCE
operation for computing A>A is shifted forward to be a
neighbor to the sparse reduce of the second mode (lines
13, 14). The same applies to B>B and the sparse reduce
of the third mode (lines 22, 23). On the other hand, C>C
is shifted to be a neighbor to the sparse reduce of the first
mode in the next CPD-ALS iteration. The highlighted boxes
show the sparse operations to be embedded in the pre-
ceding/following ALL-REDUCE. Since there are two sparse
reduce and expand operations per tensor mode, the rear-
ranged algorithm shows six boxes to indicate that all sparse
operations are to be embedded for 3-mode tensors.

4 EMBEDDING SPARSE EXPAND AND REDUCE

In order to realize the sparse expand and reduce opera-
tions using P2P messages, processor px should maintain

two processor sets: workers set (WS) and masters set (MS)
respectively defined as

WS(px) =
⋃

i� ri is local-shared

Si,

MS(px) = {owner(ri) | ri is nonlocal}.
That is, WS(px) contains the processors that contribute to
the computation of any row that px owns, whereas MS(px)
contains the processors that px is partially contributing to
the computation of a row they own. Then, a sparse expand
(reduce) on row ri is achieved as messages from (to) px to
(from) every processor in WS(px)(MS(px)).

4.1 Naive P2P Embedding

The hypercube-based ALL-REDUCE can be performed in
log2K steps for a system with K = 2D processors. The
K processors are virtually organized as a D-dimensional
hypercube topology H . In H , each processor is represented
by a D-bit binary number. We interchangeably use px to
refer both index of a processor and its D-bit binary repre-
sentation. Two processors are said to be neighbors along
dimension i if their binary representation differ only in
least significant bit i. In a D-dimensional hypercube, a d-
dimensional subcube (0 ≤ d < D) is represented by d
don’t care bits (X) and D− d fixed 0/1 bits thus having 2d

processors. Tearing along dimension i is defined as halving
H into two disjoint (D−1)-dimensional subcubes such that
the processors in the two sets are identified by the ith bit.
For example, a tearing along dimension i= 1 on processor
set PXXXX organized as a 4-dimensional hypercube can be
shown by processor sets PXX0X and PXX1X. The hypercube-
based ALL-REDUCE is well known and comes with several
names such as E-cube routing, bidirectional exchange and
exchange-add [22], [23], [24]. We adopt this ALL-REDUCE
scheme and we use R(H) to refer to it hereafter. A step
si of R(H) represents the exchange of messages between
neighboring processors along dimension i.

The naive embedding of P2P into ALL-REDUCE utilizing
R(H) is described as follows: A message m(px, pz) origi-
nating from px is sent from px to the neighbor at dimension
i where i is the position of the least significant 1 bit in the
XOR product px⊕pz . If the neighbor py at dimension i is the
destination processor (py = pz), then m(px, pz) is received
and need not to be in any exchange in any upcoming step.
Otherwise, py stores m(px, pz) in a forward buffer and
sends it to its neighbor at dimension j > i, where j is the
position of the least significant 1 bit in py⊕pz . A message is
guaranteed to arrive to its destination in at most D steps.

4.2 Expand-and-Reduce-Aware Embedding

Consider expanding a local-shared factor matrix row ri from
p0 to p3 and p5. In the naive EMB implementation, this
expand consists of two different messages m(p0, p3) and
m(p0, p5). Using R(H), these messages will respectively
take the routes p0 → p1 → p3 and p0 → p1 → p5. This
means that ri is sent (forwarded) twice in the message
from p0 to p1. In general, a message between processor px
and its neighbor py in any step can contain up to D− 1
duplicates of the same row ri. This is because the naive

5

EMB described in Sec. 4.1 is unaware of the nature of the
sparse expand and reduce. We can reduce the increase in
the communication volume in EMB by exploiting the nature
of the sparse expand and reduce operations via avoiding
transmitting the same row more than once in a message
between hypercube neighbors.

We propose an intelligent expand-and-reduce-aware
EMB that avoids transmitting more than one copy of any
row between hypercube neighbors as follows: During an
embedded sparse expand, multiple copies of row ri at step
s of R(H) are sent only once. During an embedded sparse
reduce, multiple copies of row ri at step s of R(H) are
reduced locally, and then sent as one copy. So, the reduce
on ri in the intelligent EMB is done during the routing steps
of R(H), whereas in naive EMB it is done at the receiving
end by owner(ri) when all reduce messages are received.

4.3 Communication Duality in Embedding
In CPD-ALS, each shared factor-matrix row ri is reduced
from processors in Si to owner(ri) and then the updated
ri (through local operations) is expanded from the same
owner(ri) to the same set of processors Si. That is, the same
set of processors contribute to and need row ri. We call such
reduce and expand operations as dual communications.

In the P2P implementation, dual communications incur
dual communication patterns. That is, if processor px sends
ri to py in the reduce communication, px will receive ri
from py in the expand communication. This means that the
maximum expand send volume is equal to the maximum re-
duce receive volume. The same holds for maximum expand
receive and maximum reduce send volumes.

We extend the duality definition of the P2P implementa-
tion to the EMB implementation as follows: The embeddings
Γe and Γr of dual P2P expand/reduce are said to be dual
if for each send message at step si of Γe, there exists a
step sj of Γr which involves a receive message with the
same constituent rows, and vice versa. This duality ensures
that the maximum send/receive volumes at step si of Γe

are equal to the maximum receive/send volumes at step
sj of Γr , and both Γe and Γr incur the same amount of
communication, including the forwarding overhead due to
message routing.

According to the definition of duality in EMB, if both
embeddings Γr and Γe utilize the R(H) routing then they
are not dual. Here we propose an EMB implementation that
satisfies the duality definition and attains the nice properties
of the dual reduce-and-expand communications. As the
E-cube routing algorithm R(H) defined earlier proceeds
in increasing dimension order, we then define an inverse
routing algorithm R−1(H) that proceeds in decreasing di-
mension order. That is, in step si of R(H) neighboring
processors exchange messages along dimension i, whereas
in step si of R−1(H) processors exchange messages along
dimension D−i−1, for i = 0, · · · , D− 1. The following the-
orem shows duality in the proposed EMB implementation.

Theorem 1. Utilizing R(H) for embedding P2P sparse expand
and R−1(H) for embedding a dual P2P sparse reduce (or vice
versa) incurs dual embedded expand and reduce.

Proof. In R(H), each message m(px, pz) of the P2P expand
of row ri from px = owner(ri) to pz ∈ Si routes through a

certain path ρ= px→· · ·→ py→· · ·→ pz . By the definition
of R(H) and R−1(H), a message m(pz, px) of the dual P2P
reduce of row ri follows the same path with reverse order
ρ−1 = pz → · · · → py → · · · → px. This means that for each
expanded row in the message from py to its neighbor pt in
step s of R(H), there is a dual reduced row in the message
from pt to py in step D−s−1 of R−1(H). Therefore, the
constituent rows of the message from py to its neighbor pt
in step s of R(H) are the same as those in the message from
pt to py in step D−s−1 of R−1(H).

Duality in the EMB implementation, as well as in the P2P
implementation, of expand and reduce is pivotal in reducing
the problem size for intelligent partitioning models that en-
code decreasing communication cost metrics. Furthermore,
the duality in EMB enables halving the storage overhead
required for routing the data. That is, without the duality
property there will be an explicit need for separate forward
buffers during embedded expand and reduce operations.

5 TASK-TO-PROCESSOR MAPPING

The objective in the proposed task partitioning and map-
ping is to minimize the communication volume overhead
incurred by the embedding of the P2P communications into
ALL-REDUCE. For this purpose, we define a communication
cost metric which is set as the sum of the concurrent com-
munication volume incurred by each shared factor-matrix
row in EMB. In this concurrent communication cost metric,
possibly multiple communications incurred by the same
shared matrix row along the same dimension are counted as
one. We preferred this communication cost metric in order to
capture some form of volume concurrency involved in the
expand and reduce operations associated with the shared
factor-matrix rows during the ALL-REDUCE operations.

Fig. 1 shows a sample expand incurred by a shared
factor-matrix row ri from owner(ri)=p2 to Si ={p2, p6, p7}
for E-cube routing on a 3-dimensional hypercube. The gray
processors denote the intermediate processors which do not
need ri but involve in expanding ri in EMB. In the figure,
two communication operations along dimension two con-
tributes only one to the concurrent communication volume.
Then concurrent communication volume is three.

5.1 Hypergraph Model
We propose a hypergraph model H to assign atomic tasks
to the processors for reducing concurrent communication
volume metric of EMB. In this hypergraph model, vertices
represent atomic tasks, whereas nets represent factor-matrix
rows. Here atomic tasks may refer to individual tensor
nonzeros as well as disjoint nonzero clusters. The former
case corresponds to the fine-grain [12], [20] tensor parti-
tioning, whereas the latter case corresponds to the medium-
grain [14], [19] tensor partitioning. Each vertex is associated
with a weight equal to the number of nonzeros it represents
and each net is associated with a cost of R.

In this hypergraph, consider a net nmi representing fac-
tor matrix row rmi along mode m. Then, pins of this net
represent the set of atomic tasks that contribute to the
computation of rmi during the MTTKRP operation along
mode m. During the MTTKRP operations along each other

6

000P 001P

011P010P

101P

111P110P

100P

(a) Step 0: concurrent
volume=1 total vol-
ume=1

000P 001P

011P010P

101P

111P110P

100P

(b) Step 1: concurrent
volume=1 total vol-
ume=2

000P 001P

0110P010P

101P

111P110P

100P

(c) Step 2: concurrent
volume=1 total vol-
ume=2

000P 001P

011P010P

101P

111P110P

100P

(d) Expand done

Fig. 1. A sample expand operation for a row ri from the owner(ri) = p1 to Si = {p2, p6, p7} in the embedded communication with E-cube routing.

mode, the pins of this net represent the set of atomic tasks
that need rmi for their associated computations along that
mode. Thus, nmi can be considered as encoding reduce type
of communication along modem, whereas encoding expand
type of communication along all other modes.

In a given partition Π(H), if net nmi is internal to part
Vk then row rmi is local to part/processor Vk/pk since all
atomic tasks that contribute to and use that factor-matrix
row are assigned to that part/processor. If net nmi is cut,
then row rmi becomes a shared row so that rmi is local-shared
for the processor owner(rmi), whereas it is nonlocal for the
processors in Si = Con(nmi)\owner(rmi).

For a cut net nmi , its connectivity set Con(nmi) = Ŝi

denotes the set of processors that produce partial results
for rmi during the MTTKRP operation along mode m. Ŝi

also denotes set of processors that need rmi during MTTKRP
operations along all other modes. Thus, in the former case,
cut net nmi will incur reduce communication from the set
of processors in Si to the processor owner(rmi), whereas
it will incur expand communication from the processor
owner(rmi) to processors in Si.

In this HP model, the partitioning constraint of maintain-
ing balance among part weights encodes the computational
load balance during each MTTKRP. For P2P, the partitioning
objective of minimizing the cutsize encodes minimizing the
sum of the total communication volume along all MTTKRP
operations. In the following subsection, we describe the
proposed RB-based model for many-to-one task mapping
that considers reducing concurrent communication volume
incurred by the shared rows in EMB.

5.2 Recursive-Bipartitioning Scheme

In the RB-based HP, the given hypergraph is bipartitioned
into two vertex parts which induce two subhypergraphs.
Then these two hypergraphs are further bipartitioned re-
cursively until K vertex parts are obtained. Each subtensor
corresponding to a vertex part at the last (leaf) level is
assigned to a different processor. Here, without loss of
generality, we assume that the number K of processors is
an exact power of 2. This procedure produces a complete
binary tree with log2K levels which is referred to as the
RB tree. The RB levels are denoted as d= 0, · · · , log2K−1,
where d= 0 denotes the root (bipartitioning of the original
hypergraph) and d = log2K− 1 denotes the last internal
level containing K/2 subhypergraphs. 2d hypergraphs in
the dth level are denoted by Hd

1, . . . ,Hd
2d from left to right

for 0 ≤ d < log2K . Note that the RB tree is constructed
utilizing the breadth-first bipartitioning order.

The conventional RB-based HP framework utilizes the
cut net splitting technique [25] after each RB step to encode
connectivity cutsize metric in the K-way partition to be
obtained at the end. Consider a bipartition Π2(H)={V0,V1}
obtained in a particular RB step. Then this vertex bipartition
is encoded as constituting subhypergraphs H0 = (V0,N0)
and H1 = (V1,N1) that are respectively induced by vertex
parts V0 and V1. That is, N0 and N1 respectively contain
the internal nets of V0 and V1 as well as the splitted
subnets of the cut nets in V0 and V1. Each cut net ni is
splitted as n′i with Pins(n′i)=Pins(ni)∩V0 and n′′i with
Pins(n′′i)=Pins(ni)∩V1 to the H0 and H1, respectively.
These vertex-parts/subhypergraphs V0/H0 and V1/H1 are
also called as left and right parts/hypergraphs, respectively.

The RB steps are encoded as subtensor/subhypergraph-
to-subcube mappings as follows: The root of the RB tree
corresponds to hypergraph H0

0 representing the given ten-
sor, which is initially mapped to whole hypercube PX···X. At
level d= 0, bipartitioning H0

0 into subhypergraphs H1
0 and

H1
1 is encoded as mapping the subtensors represented byH1

0

andH1
1 respectively to the subcubes PX···X0 and PX···X1 of hy-

percube PX···X. At level d=1, bipartitioning H1
0 into H2

0 and
H2

1 is encoded as mapping the subtensors represented by
H2

0 and H2
1 respectively to the subcubes PX···X00 and PX···X10

of hypercube PX···X0; and bipartitioning H1
1 into H2

2 and H2
3

is encoded as mapping the subtensors represented by H2
2

and H2
3 respectively to the subcubes PX···X01 and PX···X11 of

hypercube PX···X1. These two bipartitioning and mapping
operations together corresponds to tearing hypercube along
dimension d = 1. That is, PX···X00 ∪ PX···X01 =PX···X0X and
PX···X10 ∪ PX···X11 =PX···X1X. This process is repeated at each
level of the RB tree. Fig. 2a shows simultaneous biparti-
tioning/mapping for a 3-dimensional hypercube. The RB-
levels 0, 1 and 2 in the figure, respectively correspond to the
tearing of the hypercube shown in Fig. 1 along dimensions
0, 1 and 2.

In order to encode the objective of concurrent commu-
nication volume minimization mentioned earlier, we utilize
the above-mentioned recursive bipartitioning and mapping
framework for modifying and enhancing the conventional
cut net splitting scheme. The proposed enhancement is
performed among the subnets of the same net within a same
level, whereas conventional cut net splitting is continued to
be applied across levels.

Consider the case where the subhypergraphs at a par-

7

ticular RB-level d contains multiple subnets (splitted nets)
n′i, n

′′
i , · · · , n′···′i of the same net ni. Also consider the bipar-

titioning of the first level-d hypergraphHd
x that contains the

subnet n′i of that net ni. It is clear that there are three cases
of net n′i in the bipartition Π2(Hd

x) = {V0,V1}: n′i is cut, n′i
is internal to left part V0 or right part V1.

1) n′i is cut in Π(Hd
x): This means that shared-factor matrix

row ri is communicated along dimension d of the hy-
percube thus already encapsulating the concurrent com-
munication volume metric along dimension d. Then we
can safely remove its sibling nets n′′i , · · · , n′···′i from the
respective subhypergraph partitionings Π(Hd

y>x) to be
performed later at this level. Although these sibling nets
are not considered in the respective subhypergraph par-
titionings, the bipartitioning results of these subhyper-
graphs will be utilized to apply conventional cut net
splitting on these sibling nets for including them into
the subhypergraphs to be bipartitioned at the further RB
levels ` > d.

2) n′i is internal to left part V0 in Π(Hd
x): This means that

shared factor-matrix row ri will incur concurrent com-
munication volume only if at least one of its sibling nets
n′′i , · · · , n′···′i connect the right part V1 in a bipartition
Π(Hd

y>x) to be obtained at the current level. This cor-
responds to the case where that sibling net is either cut
or internal to right part V1 in that bipartition Π(Hd

y>x).
Unfortunately current HP methods only adopt the cut net
metric in two-way partitionings thus they cannot encode
the increase in the cutsize for nets that are either cut or
internal to a part. For this purpose, we introduce the
net-anchoring scheme which is realized as follows: we
introduce two vertices vF0 and vF1 which are fixed to left
and right parts V0 and V1, respectively. Then a net is said
to be anchored to the left part if it connects vF0 , whereas
it is said to be anchored to the right part if it connects vF1 .
We utilize net-anchoring to encode the concurrent com-
munication volume for such nets as follows: In each
subhypergraph Hd

y>x that contains a sibling net n′′i of
n′i, we anchor n′′i to the left part V0. In this way, we
enforce n′′i to connect left part in all bipartitions of those
hypergraphs to be obtained at the current level. Thus, if
n′′i connects part V1 in any bipartition Π2(Hd

y>x) then
it will become cut and increasing the cutsize so that
it will encode concurrent communication volume to be
incurred correctly. After the first bipartition Π2(Hd

y>x) in
which n′′i is cut at level d, all other further sibling nets
n′′′i , · · · , n′′′···′i will be removed from the respective sub-
hypergraph Hd

z>y partitionings at level d in accordance
with the Case 1.

3) n′i is internal to right part V1 in Π(Hd
x): This case is

handled in a dual manner with Case 2. That is, after the
first bipartition Π2(Hd

y>x) in which n′i is internal to V1
at level d, in each subhypergraph Hd

y>x that contains a
sibling net n′′i of n′i, we anchor n′′i to the right part V1.

Fig. 2 illustrates the conventional cut net splitting tech-
nique (Fig. 2a) as well as the proposed enhancements
(Fig. 2b and Fig. 2c) for net ni on 8-way partitioning with 3
RB levels. In all subfigures, at the root level bipartitioning,
ni is cut and thus splitted into its subnets n′i and n′′i .

In Fig. 2a, at level-1, n′i remains internal to V1 in Π(H1
0),

whereas it is cut in Π(H1
1). At level-2, n′i is cut in Π(H2

1),
whereas subnets n′′′i and n′′′′i of n′′i remain internal to the
left and right part in Π(H2

2) and Π(H2
2), respectively. Since

ni is cut three times, its con(n)−1 value is three with the
connectivity set Con(ni) = Ŝi = {p1, p2, p6, p7}. Expanding
this row is shown in Fig. 1 for owner(ri) = p1.

Fig. 2b shows Cases 2 and 3. At level-1 of the figure,
since n′i is internal to V1 in H1

0, n′′i is anchored to the right
part V1 in H1

1. Similarly, at level-2, n′i is internal to V0 thus
n′′′i and n′′′′i are anchored to the left part V0 in H2

2 and H2
3,

respectively. Fig. 2c shows Case 1. At level-2 of the figure,
n′i is cut thus its sibling nets n′′′i and n′′′′i , which are splitted
from n′′i , are removed from H2

2 and H2
3.

Algorithm 3 shows the steps of the proposed RB frame-
work which realize the proposed enhancements. In the algo-
rithm, state(n) maintains if a net n becomes cut or internal
to the left part (L-internal) or right part (R-internal) at the
current level of the RB tree. parent(n) denotes the parent
net from which net n is obtained through splitting(s). That
is, net n is effectively a subnet of parent(n).

The outermost for loop in lines 4–32, performs the RB
steps in breadth-first traversal order, whereas the inner for
loop in lines 7–32 performs the bipartitionings at each level.
The state information of the nets are initialized to NIL
at the beginning of each level (lines 5–6). Lines 8 and 9
introduce the fixed vertices into Hd

k for enabling the real-
ization of the net-anchoring. The inner for loop in line 10–16
applies proposed net-removal and net-anchoring techniques
before bipartitioning the current hypergraph Hd

k according
to current states of the subnets involved inHd

k. The inner for
loop in lines 18-25 computes the state information for each
net after bipartitioning. Lines 26–30 construct the left and
right subhypergraphs Hd+1

2k and Hd+1
2k+1 (to be bipartitioned

at the next level d+1) from the current Hd
k using current

bipartition Π2(Hd
k) obtained in line 17 by utilizing the

conventional cut net splitting. The for loop in lines 31–32
inherits the parent field of the cut nets to its split nets.

5.3 Factor-Matrix Row Assignment to Processors
The row-to-processor assignment problem corresponds to
determining owner(ri) for each factor-matrix row ri. For
CPD utilizing P2P, the well known best-fit increasing heuris-
tic used for solving the K-feasible bin-packing problem [26]
is adopted [14], [19]. This method aims at balancing proces-
sors’ volume loads without increasing the total communi-
cation volume. Here, we also adopt B-feasible bin-packing
problem [26] for solving this assignment problem in EMB.

The main difference between the row-to-processor as-
signment problem encountered in P2P and EMB is that
P2P involves a single communication step, whereas EMB
involves loosely coupled D= log2K communication steps.
So, in P2P, assignment of a row to a processor increases the
volume load of only that processor, whereas in EMB it in-
creases the volume loads of at mostD processors in different
communication steps. That is, if the distance between the
owner and receiver processors is equal to the dimension D
of the hypercube, there are D − 2 intermediate processors
which are only forwarding the factor-matrix row. So, each
processor has a volume load at D different communication
steps. This difference increases the number of bins from K
in P2P to DK in EMB.

8

bipartitioning order

0
0H

0
1H 1

1H

1
2H0

2H 2
2H

3
2H

in

i
′n

i
′′n

010P 110P000P 100P 011P 111P001P 101P

X01P X11PX00P X10P

XX0P XX1P

i
′n

i
′′′′ni

′′′n

(a) Conventional cut net splitting

bipartitioning order

0
0H

0
1H 1

1H

1
2H0

2H 2
2H

3
2H

in

i
′n

i
′′n

010P 110P000P 100P 011P 111P001P 101P

X01P X11PX00P X10P

XX0P XX1P

i
′′′′n

i
′′′n

i
′n

0
Fv 0

Fv

1
Fv

(b) Cases 2 and 3: proposed net anchoring

bipartitioning order

0
0H

0
1H 1

1H

1
2H0

2H 2
2H

3
2H

in

i
′n

i
′′n

010P 110P000P 100P 011P 111P001P 101P

X01P X11PX00P X10P

XX0P XX1P

1
Fv

i
′n

(c) Case 1: proposed net removal

Fig. 2. (a) Conventional cut net splitting, (b) and (c) proposed enhance-
ments for net ni on eight-way partitioning with three levels of RB steps..

In EMB, the cost of a row-to-processor assignment in-
stance is defined as the sum of the volume load of the
maximally loaded processor in each dimension. So, for the
best-fit criterion we define the sum of squares function as

d=D∑
d=1

(
k=K∑
k=1

B2
dk)2. (1)

In the proposed algorithm, for each mode, factor-matrix

Algorithm 3 RB-based task-to-processor assignment
Require: H = (V,N), K

1: H0
0 = H

2: for each net n ∈ N 0
0 do

3: parent(n) = n . initialize parent of the net as itself
4: for d = 0 to log2K − 1 do
5: for each net n ∈ N 0

0 do
6: state(n) = NIL . initial value for each net
7: for k = 0 to 2d − 1 do
8: Vd

k = Vd
k ∪ {vF0 , vF1 }

9: fix vF0 to V0, fix vF1 to V1
10: for each net n ∈ N d

k do
11: if state(parent(n)) is CUT then
12: N d

k = N d
k \ {n}

. remove n since it is already cut before at this level
13: if state(parent(n)) is L-internal then
14: Pins(n)=Pins(n) ∪ {vF0 } . anchor n to left part
15: if state(parent(n)) is R-internal then
16: Pins(n)=Pins(n)∪{vF1 } . anchor n to right part
17: Π2 =BIPARTITION(Hd

k = (Vd
k ,N d

k)) . Π2 ={V0,V1}
18: for each net n ∈ N d

k do
19: if n is a cut net then
20: state(parent(n)) = CUT
21: if state(parent(n)) is not CUT then
22: if n is internal to left part then
23: state(parent(n)) = L-internal
24: if n is internal to right part then
25: state(parent(n)) = R-internal
26: Form H0 = (V0,N0) induced by V0
27: N0 = {n′ : n ∈ N , pins(n) ∩ V0 6= 0 ∃ pins(n′) =

pins(n) ∩ V0} . conventional cut net splitting
28: Form H1 = (V1,N1) induced by V1
29: N1 = {n′′ : n ∈ N , pins(n) ∩ V1 6= 0 ∃ pins(n′′) =

pins(n) ∩ V1} . conventional cut net splitting
30: Hd+1

2k = H0, Hd+1
2k+1 = H1

31: for each cut net n ∈ N d
k split as n′ and n′′ do

32: parent(n′) = parent(n′′) = parent(n)

rows are considered in decreasing order of their |Ŝi| values
for assignment. The best-fit criterion for the assignment is
to select the processor that incurs the minimum increase
in (1). After each assignment, we increase the loads of the
bins which are involved in the communication in terms of
both send and receive volumes. In this way, (1) captures
processors’ send plus receive volume loads during expand
communication which is equal to the sum of processors’
send volume loads during expand and reduce communica-
tions thanks to the duality described in Sec. 4.3.

For P2P, each row is assigned to one of the processors
which contributes/needs that factor matrix row. This en-
sures total communication volume does not increase with
the assignment. On the other hand, for EMB, we can relax
this constraint. That is, consider the processors that partici-
pate in the communication of a shared row but do not pos-
sibly contribute/need that row. Such processors can also be
considered as candidate owners. Since these processors are
already communicating that row such assignments might
not increase the volume load. Obviously this relaxation is
expected to further decrease the function in (1) because of

9

larger degree of freedom for each assignment. We should
mention here that this relaxation in row-to-processor assign-
ments does not affect the concurrent communication cost
metric defined for individual shared factor-matrix rows and
minimized by the scheme in Sec. 5.2.

6 EXPERIMENTS

6.1 Setting

We performed experiments using three methods: P2P-mg,
EMB-rand and EMB-hp. The term left to the hyphen denotes
the parallel scheme used (P2P or EMB), whereas the right
term denotes the nonzero partitioning method used. The mg
in P2P-mg refers to partitioning the input tensor according
to the state-of-the-art medium-grain HP model [19]. The
rand in EMB-rand refers to partitioning the input tensor
randomly in such a way that numbers of nonzeros assigned
to processors differ by at most one. The hp in EMB-hp
refers to partitioning and mapping the tensor nonzeros by
using the method proposed in Sec. 5. For partitioning the
hypergraph models in P2P-mg and EMB-hp, we use the tool
PaToH [25], [27] with default parameters.

Parallel setup: The experiments are taken with up to
4096 processors on an Apollo 9000 HPC system. Each node
in this system consists of two AMD EPYC 7742 processors,
each with 64 cores, and 256 GB of memory. The nodes are
connected with a Mellanox HDR Infiniband network. We
use 16 cores per node in all our experiments.

Dataset: Our dataset consists of ten real-world sparse
tensors with varying sizes. Table 1 shows the tensors
and their properties. Delicious, Enron, Flickr and
NELL-1 are obtained from the FROSTT sparse tensors
repository [28]. 1998DARPA contains tuples that represent
timestamps of connections made between source IP and
destination IP. Freebase-music contains music-related
(subject entity, object entity, relation) tuples from Freebase
online database.Gowalla contains check-in data as (user,
POI, check-in) tuples from the location-based social network
Gowalla [29]. Movies-amazon contains user-movie-word
tuples from the user reviews of movies in Amazon [30].
Netflix and Yelp are rating datasets that respectively con-
tain (usr, business, rating) and (user, movie, rating) tuples.

The dataset also contains the largest three ten-
sors from FROSTT, Amazon-reviews, Patents and
Reddit-2015, each having more than 1B nonzeros. Since
common HP tools such as PaToH and hMeTis [31] do not
support 64-bit integers, these very large tensors are only
used to evaluate the EMB framework (Sections 3 & 4) by
comparing EMB-rand versus P2P-rand, whereas the rest of
the tensors are used to evaluate all contributions.

6.2 Performance Results

Latency hiding: Table 2 displays the amount of latency hid-
den by EMB in terms of number of messages whose latency
overheads are totally avoided. In the table, P2P columns
show the number of messages only for the sparse expand
and reduce operations during a CPD-ALS iteration. That is,
latency overhead of ALL-REDUCE is not included in the P2P
columns. The table also displays the latency overhead of
ALL-REDUCE during a CPD-ALS iteration which is the only

TABLE 1
Properties of the Test Tensors

tensor
mode sizes

nnz density
I1 I2 I3 I4

1998DARPA 23.8M 22.5K 22.5K 28.4M 2.37E-09
Delicious 533K 17.3M 2.47M 1.44K 140M 4.27E-15
Enron 6.07K 5.70K 244K 1.18K 54.2M 5.46E-09
Flickr 320K 28.2M 1.61M 731 113M 1.07E-14
Freebase-music 23.3M 0.17K 23.3M 100M 1.10E-09
Gowalla 1.3M 0.60K 107K 6.26M 7.65E-08
Movies-amazon 227K 4.40K 87.8K 15.0M 1.72E-07
NELL-1 25.5M 2.14M 2.90M 144M 9.05E-13
Netflix 480K 2.18K 17.8K 100M 5.40E-06
Yelp 773K 85.5K 687K 186M 4.09E-09

Very Large Tensors
Amazon-reviews 4.82M 1.77M 1.80M 1.74B 1.13E-10
Patents 239K 46 239K 3.60B 1.37E-03
Reddit-2015 8.21M 176K 8.12M 4.69B 3.97E-10

latency overhead in EMB. In the table, “max” and “avg”
respectively refer to the maximum and average number of
messages handled by processors during a CPD-ALS itera-
tion. The maximum and average number of messages under
the P2P columns are the sums of maximum and average
number of messages required to perform the sparse expand
and reduce operations in P2P for each tensor mode. The
number of messages under the EMB column are the sum of
messages during the two ALL-REDUCE operations for each
tensor mode. Note that maximum and average values in
EMB are equal due to the regularity of communication.

TABLE 2
Max/Avg number of messages in a CPD-ALS iteration on K = 4096

tensor
P2P EMB

max avg max(=avg)

1998DARPA 6,578 145 72
Delicious 25,413 13,332 96
Enron 19,755 2,149 96
Flickr 15,382 4,709 96
Freebase-music 14,739 868 72
Gowalla 6,245 907 72
Movies-amazon 9,590 1,786 72
NELL-1 22,543 15,434 72
Netflix 14,824 3,391 72
Yelp 20,375 6,112 72

average 14,076 2,480 78

Table 2 shows that sparse expand/reduce incur signifi-
cantly large number of messages in P2P, thus rendering the
parallel CPD-ALS as latency bound with increasing K . This
is because the number of messages in P2P usually increases
linearly with increasing K . On the other hand, the number
of messages in EMB is significantly smaller and increase
logarithmically with increasing K . The 72 and 96 values
under EMB refer to the number of messages handled by a
processor in 3-mode (3×2×log2K) and 4-mode (4×2×log2K)
tensors, respectively.

10

TABLE 3
Improvement of Expand/Reduce-aware EMB against Naive EMB

method K = 128 256 512 1024 2048 4096

EMB-rand 0.78 0.79 0.78 0.76 0.72 0.73
EMB-hp 0.90 0.86 0.84 0.81 0.82 0.76

Values are EMB runtimes normalized w.r.t. those by naive EMB.

As seen in Table 2, there is a significant imbalance
between maximum and average number of messages in
P2P. This disturbs the scaling performance since usually
the maximum metric defines the runtime since there are
global synchronizations (due to ALL-REDUCE) before/after
the sparse P2P communication steps. On the other hand, this
problem does not arise in EMB since the regular commu-
nication pattern of EMB naturally attains equal number of
maximum and average messages. This is a clear advantage
in favor of EMB since there is no need to consider re-
ducing/balancing the number of messages when designing
intelligent partitioning models allowing them to focus on
reducing/balancing volume.

The expand-and-reduce-aware embedding: Table 3
shows the benefit of using expand-and-reduce-aware EMB
(Sec. 4.2) over naive EMB (Sec. 4.1) on both EMB-rand
and EMB-hp. The values given in the table are CPD-ALS
iteration times of the ten tensors taken with expand-and-
reduce-aware EMB normalized with respect to those taken
with naive EMB. The runtimes of all tensors are then av-
eraged per K value for each method. As seen in the table,
utilizing expand-and-reduce-aware EMB for sparse expand
and reduce decreases the parallel CPD-ALS runtime, on
average, by up to 21% − 28% when EMB-rand is used and
by 10% − 24% when EMB-hp is used. Furthermore, the
relative percent improvement of expand-and-reduce-aware
EMB over naive EMB for both EMB-rand and EMB-hp
generally increases with increasing K .

HP-based mapping: Table 4 shows the performance
improvement attained by the HP-based mapping algorithm
discussed in Sec. 5 against EMB-rand on K = 4096. The
performance comparison is given in terms of maximum
and concurrent volume metrics as well as parallel runtimes
for R = {8, 32}. For each tensor, the first line displays
actual values for EMB-hp, whereas the second line displays
normalized values with respect to those of EMB-rand.

As seen in Table 4, EMB-hp achieves significant decrease
in concurrent communication volume metric (90% on aver-
age) compared to EMB-rand. EMB-hp achieves also signifi-
cant decrease in maximum communication volume handled
by a processor (65% on average) compared to EMB-rand.
These improvements in concurrent and maximum commu-
nication volume metrics lead to an approximately 68% and
71% improvement in CPD-ALS iteration time respectively
for R = 8 and 32. Note that improvement in the maximum
communication volume closely correlates with the improve-
ment in the parallel runtime on average.

Factor-matrix row assignment: Table 5 shows the per-
formance improvement of the proposed bin-backing based
factor-matrix row assignment method (Sec. 5.3) against
random assignment on K = {128, · · · , 4096}. The per-

TABLE 4
Performance of EMB-hp against EMB-rand on K = 4096

tensor
volume ×R runtime (ms)

max concurrent R = 8 R = 32

1998DARPA
9,155 94,639 28.609 35.794
0.359 0.004 0.929 0.702

Delicious
178,695 15,014,082 79.236 201.793

0.477 0.124 0.512 0.311

Enron
23,964 443,498 4.984 16.829
0.525 0.145 0.321 0.219

Flickr
51,391 5,472,870 12.802 77.683
0.139 0.025 0.091 0.142

Freebase-music
19,421 5,440,976 64.492 424.432
0.053 0.016 0.444 0.507

Gowalla
7,152 1,056,561 1.966 7.306
0.314 0.126 0.254 0.219

Movies-amazon
22,730 1,152,274 4.473 15.737
0.766 0.504 0.526 0.343

NELL-1
230,823 27,511,288 50.343 262.416

0.651 0.176 0.369 0.479

Netflix
60,170 3,092,374 11.275 45.305
0.440 0.519 0.151 0.137

Yelp
180,303 6,374,191 35.990 172.814

0.591 0.525 0.261 0.265

average
41,708 2,566,274 16.688 62.751
0.349 0.098 0.322 0.292

For each tensor, the first line displays actual values for EMB-hp, whereas the
second line displays the normalized values w.r.t. those of EMB-rand.

formance comparison is given in terms of the maximum
communication volume handled by processors obtained by
bin-packing-based-assignment algorithm normalized with
respect to those by random assignment. As seen in the table,
the bin-backing algorithm attains considerable performance
improvement (15% on average) against random assignment.

TABLE 5
Performance of Proposed Row-to-Processor Assignment

tensor
maximum volume

K = 128 256 512 1024 2048 4096

1998DARPA 1.07 1.08 1.04 0.90 1.00 0.99
Delicious 0.82 0.86 0.84 0.85 0.86 0.86
Enron 0.91 0.93 0.90 0.86 0.89 0.86
Flickr 0.87 0.87 0.89 0.86 0.86 0.84
Freebase-music 0.69 0.63 0.70 0.63 0.60 0.56
Gowalla 0.81 0.79 0.83 0.82 0.84 0.81
Movies-amazon 0.85 0.88 0.84 0.81 0.87 0.83
NELL-1 0.80 0.84 0.83 0.87 0.88 0.88
Netflix 0.82 0.82 0.85 0.88 0.91 0.93
Yelp 0.85 0.84 0.84 0.84 0.89 0.84

average 0.84 0.85 0.85 0.83 0.85 0.83

Values are normalized w.r.t. those of random assignment.

11

Strong scaling: Fig. 3 shows the strong scaling curves of
the three methods on K= {128, · · · , 4096} processors with
two different R values. As seen in Fig. 3, P2P-mg does not
scale after K = 1024 for the tensors Delicious, Flickr
and NELL-1, whereas it does not scale after K=512 for rest
of the tensors. Both EMB schemes scale much better than
P2P for each tensor and for both R values.

As seen in Fig. 3, EMB-hp runs much faster than
EMB-rand in all instances thus showing the validity of
the task-to-processor mapping method proposed in Sec. 5.
Furthermore, EMB-hp runs much faster than the state-of-
the-art P2P-mg for all tensors and all R values on K>1024.

Fig. 4 shows the strong scaling curves for the three very
large tensors. As seen in the figure, for each large tensor,
P2P-rand fails to scale after 1024 processors, whereas EMB-
rand continues to scale up to 4096 processors.

7 RELATED WORK

In the literature, there exists many shared- and distributed-
memory parallel CPD-ALS algorithms [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [32], [33], [34], [35]. Here
we briefly mention about distributed-memory parallel
CPD-ALS algorithms.

Several works on scaling distributed-memory paral-
lel CPD-ALS target at enhancing the MTTKRP operation
and/or reducing the bandwidth overhead of the P2P sparse
reduce and expand operations through intelligent combina-
torial models or through multidimensional division meth-
ods. For instance, among combinatorial models for enhanc-
ing MTTKRP, [15], [18] and [20] are proposed. Among
combinatorial models for reducing communication over-
head, HP is utilized [12], [14], [19], [20]. However these HP
models focus on reducing the bandwidth component of the
communication. Multidimensional cartesian partitioning is
utilized with a nice property of bringing upper bounds on
both bandwidth and latency components costs [13], [14].
The HP model in [14] targets at reducing the bandwidth
requirement of cartesian partitioning. [16] also considers
partitioning factor matrices column-wise at the expense of
tensor replication, whereas all other methods as well as our
method involves row-wise partitioning of the factor matri-
ces. There also exists toolkits for shared- and distributed-
memory parallel systems [11], [13], [17], [35], [36].

Latency reduction and hiding is well-known in par-
allel iterative solvers, such as Conjugate Gradient and
GMRES, through communication/computation overlap-
ping [37], [38], pipelining [39], and embedding [40]. The
embedding scheme proposed in [40] exploits the fact that
each SpMV is followed by an inner product which involves
the input and output vectors. They propose to embed
sparse expand operations on the output vector entries to
the following inner product realized with ALL-REDUCE by
utilizing row-parallel SpMV. Our work differs from [40] in
the following aspects: The rearrangements which enable the
embedding are different because of the nature of the appli-
cations (CG vs. CPD-ALS); [40] embeds only sparse expand
whereas we embed both sparse expand and reduce; [40] use
naive embedding so that each message in the ALL-REDUCE
may contain multiple copies of same output-vector en-
tries, whereas we avoid this with the proposed expand-
and-reduce-aware embedding; [40] uses conventional HP

followed by a KL-based one-to-one mapping, whereas we
propose a simultaneous partitioning/mapping algorithm.
To our knowledge, our work is the first to use latency hiding
in parallel tensor decomposition.

8 CONCLUSION

We proposed a framework for hiding the latency of
P2P sparse expand and reduce operations during paral-
lel CPD-ALS through embedding them into dense col-
lective ALL-REDUCE operations which already exist in
the CPD-ALS. The framework consists of a computa-
tion/communication rearrangement of the CPD-ALS which
enables the embedding as well as an intelligent embedding
scheme that helps reducing the increase in communica-
tion due to embedding. The recursive-bipartitioning-based
hypergraph partitioning method proposed for subtensor-to-
processor mapping as well as the bin-backing-based method
proposed for factor-matrix row to processor mapping are
found to be quite effective in reducing the bandwidth
overhead in the embedded-ALL-REDUCE. We have obtained
very good scaling results on up to 4096 processors for ten
real-word tensors, whereas a state-of-the-art P2P implemen-
tation does not scale after 1024 processors due to large the
latency overhead especially for small decomposition ranks.
The proposed latency-hiding framework paves the way for
scalable sparse tensor decomposition on exa-scale systems.

ACKNOWLEDGMENTS

This work is supported by the Scientific and Technologi-
cal Research Council of Turkey (TUBITAK) under project
EEEAG-116E043.

REFERENCES

[1] T. D. Nguyen, T. Tran, D. Phung, and S. Venkatesh, “Tensor-variate
restricted boltzmann machines,” in Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

[2] E. Acar and B. Yener, “Unsupervised multiway data analysis: A
literature survey,” IEEE transactions on knowledge and data engineer-
ing, vol. 21, no. 1, pp. 6–20, 2008.

[3] S. Hosseinimotlagh and E. E. Papalexakis, “Unsupervised content-
based identification of fake news articles with tensor decomposi-
tion ensembles,” in Proceedings of the Workshop on Misinformation
and Misbehavior Mining on the Web (MIS2), 2018.

[4] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to ten-
sor decompositions and their applications in machine learning,”
arXiv preprint arXiv:1711.10781, 2017.

[5] H. Zhou, L. Li, and H. Zhu, “Tensor regression with applications
in neuroimaging data analysis,” Journal of the American Statistical
Association, vol. 108, no. 502, pp. 540–552, 2013, pMID: 24791032.

[6] K. Makantasis, A. D. Doulamis, N. D. Doulamis, and A. Nikitakis,
“Tensor-based classification models for hyperspectral data anal-
ysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56,
no. 12, pp. 6884–6898, 2018.

[7] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky,
“Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[8] Y. Wang, W. G. Guo, and X. Yue, “Tensor decomposition to
compress convolutional layers in deep learning,” IISE Transactions,
p. 1–60, Apr 2021.

[9] D. Song, P. Zhang, and F. Li, “Speeding up deep convolutional
neural networks based on tucker-cp decomposition,” in Proceed-
ings of the 2020 5th International Conference on Machine Learning
Technologies, ser. ICMLT 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 56–61.

12

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

Gowalla Movies−Amazon NELL−1 Netflix Yelp

1998DARPA Delicious Enron Flickr Freebase−music

128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096

128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096

100

300

1000

3000

30

100

300

1000

3000

10

100

1000

10

100

1000

10

100

1000

100

300

1000

100

300

1000

10

30

100

300

10

30

100

300

3

10

30

100

300

number of processors

C
P

D
−

A
LS

 it
er

at
io

n
tim

e
(m

s)

●P2P−mg EMB−rand EMB−hg

(a) R = 8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Gowalla Movies−Amazon NELL−1 Netflix Yelp

1998DARPA Delicious Enron Flickr Freebase−music

128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096

128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096

1000

3000

10000

300

1000

3000

100

300

1000

3000

100

300

1000

30

100

300

1000

300

1000

3000

300

1000

3000

30

100

300

1000

30

100

300

1000

10

30

100

300

number of processors

C
P

D
−

A
LS

 it
er

at
io

n
tim

e
(m

s)

(b) R = 32

Fig. 3. Comparing Strong Scaling curves of P2P-mg, EMB-rand and EMB-hp with decomposition ranks R = 8 and R = 32.

[10] Y. Ji, Q. Wang, X. Li, and J. Liu, “A survey on tensor techniques
and applications in machine learning,” IEEE Access, vol. 7, pp.
162 950–162 990, 2019.

[11] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization
of tensors,” in Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2014, pp. 1296–1304.

[12] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions
in distributed memory systems,” in SC ’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2015, pp. 1–11.

[13] S. Smith and G. Karypis, “A medium-grained algorithm for sparse
tensor factorization,” in 2016 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), May 2016, pp. 902–911.

[14] S. Acer, T. Torun, and C. Aykanat, “Improving medium-grain
partitioning for scalable sparse tensor decomposition,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 29, no. 12, pp. 2814–
2825, Dec 2018.

[15] O. Kaya and B. Uçar, “Parallel CANDECOMP/PARAFAC decom-

position of sparse tensors using dimension trees,” SIAM Journal on
Scientific Computing, vol. 40, no. 1, pp. C99–C130, 2018.

[16] J. Choi, X. Liu, S. Smith, and T. Simon, “Blocking optimization
techniques for sparse tensor computation,” in 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), May
2018, pp. 568–577.

[17] M. Baskaran, T. Henretty, and J. Ezick, “Fast and scalable dis-
tributed tensor decompositions,” in 2019 IEEE High Performance
Extreme Computing Conference (HPEC), 2019, pp. 1–7.

[18] L. Ma and E. Solomonik, “Efficient parallel cp decomposition with
pairwise perturbation and multi-sweep dimension tree,” in 2021
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2021, pp. 412–421.

[19] M. O. Karsavuran, S. Acer, and C. Aykanat, “Partitioning models
for general medium-grain parallel sparse tensor decomposition,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1,
pp. 147–159, 2021.

[20] N. Abubaker, S. Acer, and C. Aykanat, “True load balancing for
matricized tensor times khatri-rao product,” IEEE Transactions on

13

Amazon−reviews Patents Reddit−2015

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

5000

7000

10000

1000

3000

10000

3000

5000

10000

number of processors

C
P

D
−

A
LS

 it
er

at
io

n
tim

e
(m

s)

P2P−rand EMB−rand

(a) R = 8

Amazon−reviews Patents Reddit−2015

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

6000

7000

10000

3000

5000

10000

5000

7000

10000

number of processors

C
P

D
−

A
LS

 it
er

at
io

n
tim

e
(m

s)

(b) R = 32

Fig. 4. Strong Scaling curves of EMB-rand versus P2P-rand on very
large tensors with decomposition ranks R = 8 and R = 32.

Parallel and Distributed Systems, vol. 32, no. 8, pp. 1974–1986, 2021.
[21] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-

tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.
[22] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn, “Col-

lective communication: theory, practice, and experience,” Concur-
rency and Computation: Practice and Experience, vol. 19, no. 13, pp.
1749–1783, 2007.

[23] Z. Chi, H. Yan, and T. Pham, Fuzzy algorithms: with applications
to image processing and pattern recognition. World Scientific, 1996,
vol. 10.

[24] C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan, “Iterative
algorithms for solution of large sparse systems of linear equations
on hypercubes,” IEEE Transactions on computers, vol. 37, no. 12, pp.
1554–1568, 1988.

[25] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication,”
IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 7,
pp. 673–693, July 1999.

[26] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Rockville, MD, USA: Computer Science Press, 1978.

[27] Ü. V. Çatalyürek and C. Aykanat, PaToH (Partitioning Tool for
Hypergraphs). Boston, MA: Springer US, 2011, pp. 1479–1487.

[28] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and
G. Karypis. (2017) FROSTT: The formidable repository of open
sparse tensors and tools. [Online]. Available: http://frostt.io/

[29] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
user movement in location-based social networks,” in Proceedings
of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2011, pp. 1082–1090.

[30] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
understanding rating dimensions with review text,” in Proceedings
of the 7th ACM conference on Recommender systems, 2013, pp. 165–
172.

[31] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: applications in VLSI domain,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7,
no. 1, pp. 69–79, March 1999.

[32] J. Li, B. Uçar, Ü. V. Çatalyürek, J. Sun, K. Barker, and R. Vuduc,
“Efficient and effective sparse tensor reordering,” in Proceedings of
the ACM International Conference on Supercomputing, ser. ICS ’19.
New York, NY, USA: ACM, 2019, pp. 227–237.

[33] S. Smith and G. Karypis, “Tensor-matrix products with a com-
pressed sparse tensor,” in Proceedings of the 5th Workshop on Irreg-

ular Applications: Architectures and Algorithms, ser. IA3 ’15. New
York, NY, USA: ACM, 2015, pp. 5:1–5:7.

[34] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of sparse
tensors,” in SC18: Int. Conference for High Performance Computing,
Networking, Storage and Analysis, Nov 2018, pp. 238–252.

[35] K. D. Devine and G. Ballard, “GentenMPI: Distributed memory
sparse tensor decomposition.” August 2020.

[36] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplica-
tion,” in 2015 IEEE International Parallel and Distributed Processing
Symposium, May 2015, pp. 61–70.

[37] E. De Sturler and H. A. van der Vorst, “Reducing the effect
of global communication in GMRES(m) and CG on parallel
distributed memory computers,” Applied Numerical Mathematics,
vol. 18, no. 4, pp. 441–459, 1995.

[38] T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm, “Opti-
mizing a conjugate gradient solver with non-blocking collective
operations,” Parallel Computing, vol. 33, no. 9, pp. 624–633, 2007.

[39] P. Ghysels and W. Vanroose, “Hiding global synchronization la-
tency in the preconditioned conjugate gradient algorithm,” Parallel
Computing, vol. 40, no. 7, pp. 224–238, 2014.

[40] R. O. Selvitopi, M. M. Ozdal, and C. Aykanat, “A novel method
for scaling iterative solvers: Avoiding latency overhead of parallel
sparse-matrix vector multiplies,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 3, pp. 632–645, 2015.

Nabil Abubaker received the BS degree from
An-Najah National University, Palestine, where
he was an active IEEE student member and
served as the vice-chair of the university’s stu-
dent branch. He received the MS degree from
Bilkent University, Turkey where he is currently
pursuing his PhD degree, all in Computer En-
gineering. His research interests include par-
allel and scientific computing, with focus on
communication-efficient iterative algorithms.

M. Ozan Karsavuran received the BS, MS, and
PhD degrees in 2012, 2014, and 2020, respec-
tively, in computer engineering from Bilkent Uni-
versity, Turkey, where he is currently postdoc-
doral researcher. His research interests include
combinatorial scientific computing, graph and
hypergraph partitioning for sparse matrix and
tensor computations, and parallel computing in
distributed and shared memory systems.

Cevdet Aykanat received the BS and MS de-
grees from Middle East Technical University,
Turkey, both in electrical engineering, and the
PhD degree from Ohio State University, Colum-
bus, in electrical and computer engineering. He
worked at the Intel Supercomputer Systems Di-
vision, Beaverton, Oregon, as a research asso-
ciate. Since 1989, he has been affiliated with the
Department of Computer Engineering, Bilkent
University, Turkey, where he is currently a profes-
sor. His research interests mainly include paral-

lel computing and its combinatorial aspects. He is the recipient of the
1995 Investigator Award of The Scientific and Technological Research
Council of Turkey and 2007 Parlar Science Award. He has served as
an Associate Editor of IEEE Transactions of Parallel and Distributed
Systems between 2009 and 2013.

