
1

Minimizing Staleness and Communication
Overhead in Distributed SGD for Collaborative

Filtering
Nabil Abubaker, Orhun Caglayan, M. Ozan Karsavuran, and Cevdet Aykanat

Abstract—Distributed asynchronous stochastic gradient descent (ASGD) algorithms that approximate low-rank matrix factorizations

for collaborative ltering perform one or more synchronizations per epoch where staleness is reduced with more synchronizations.

However, high number of synchronizations would prohibit the scalability of the algorithm. We propose a parallel ASGD algorithm,

η-PASGD, for efciently handling η synchronizations per epoch in a scalable fashion. The proposed algorithm puts an upper limit of K

on η, for a K-processor system, such that performing η = K synchronizations per epoch would eliminate the staleness completely.

The rating data used in collaborative ltering are usually represented as sparse matrices. The sparsity allows for reduction in the

staleness and communication overhead combinatorially via intelligently distributing the data to processors. We analyze the staleness

and the total volume incurred during an epoch of η-PASGD. Following this analysis, we propose a hypergraph partitioning model to

encapsulate reducing staleness and volume while minimizing the maximum number of synchronizations required for a stale-free SGD.

This encapsulation is achieved with a novel cutsize metric that is realized via a new recursive-bipartitioning-based algorithm.

Experiments on up to 512 processors show the importance of the proposed partitioning method in improving staleness, volume, RMSE

and parallel runtime.

Index Terms—Recommender Systems, Collaborative Filtering, Matrix Completion, Distributed-Memory Parallel Stochastic Gradient

Descent, Communication-Efcient Algorithms, MPI, Hypergraph Partitioning.

F

1 INTRODUCTION

COLLABORATIVE ltering methods are among the most
widely-used approaches to implement Recommender

systems. In collaborative ltering, latent factor methods
that translate into a matrix completion problem are highly
utilized [1]. One of the most accurate and robust methods
used in matrix completion is low-rank matrix factoriza-
tion [2], [3]. A sparse rating matrix R ∈ R

M×N , rows of
which represent users and columns of which represent items
rated by those users, is factorized into two dense matrices
W ∈ R

M×F and H ∈ R
N×F . A row wi of W and a row hj

ofH are feature vectors of size F respectively corresponding
to user i and item j. The set of known ratings in R (i.e., the
non-zero entries) is denoted by Γ. This factorization is then
used to predict a missing rating r̂ij /∈ Γ with the inner-
product r̂ij = 〈wi,hj〉.

Recommender systems usually serve applications that
generate massive amounts of data and are deployed on
large-scale distributed-memory parallel systems. Further-
more, the training process of Recommender systems is
repeated multiple times in practice with different learning
hyperparameters in a process called hyperparameter op-
timization. Therefore, the distributed matrix factorization

• Nabil and Cevdet are with the department of Computer Engineering,
Bilkent University, Turkey.

• Orhun is with Facebook London, UK.
• M. Ozan is with Lawrance Berkely National Laboratory, USA.
• The work was done when Orhun and M. Ozan were with Bilkent

University.
• E-mails: [nabil.abubaker, orhun.caglayan]@bilkent.edu.tr, mokarsavu-

ran@lbl.gov, aykanat@cs.bilkent.edu.tr

Manuscript received XXXX XX, XXX; revised XXXX XX, XXX.

algorithms used in these Recommender systems should be
performant and scalable to utilize the underlying resources
and speedup the overall training process.

The low-rank approximation of R constituting the two
factor matrices W and H can be computed with several
methods such as Stochastic Gradient Descent (SGD) and
Alternating Least Squares (ALS). SGD is preferred in serial
setting due to its efciency and convergence robustness [2].
In parallel setting, however, SGD becomes harder to execute
because of its inherently sequential nature. In order to
correctly execute SGD in parallel, the update order of the
gradient should be equivalent to that of a serially-executed
SGD. In such a case, the parallel SGD is called serializable.
The main challenge in executing serializable parallel SGD is
to prevent two or more processors from updating the same
feature vector at the same time (race condition). Otherwise,
the gradient becomes stale and the convergence is no longer
guaranteed. To avoid race conditions, locking mechanisms
must be implemented and they are usually very expensive
and prevent true scalability of SGD. In distributed-memory
setting, avoiding staleness would also mean communicating
up-to-date feature vectors after every update on the gradi-
ent, leading to a communication-bound execution.

Asynchronous parallel SGD (ASGD) methods aim at
achieving scalable and performant execution of SGD in
parallel by relaxing the serializability requirement and thus
allowing race conditions and staleness. Popularized by the
Hogwild! algorithm [4], asynchronous SGD has become
very common not only in the context of matrix completion
but also for other machine learning applications. Generally,
each processor executing asynchronous SGD operates on a

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

2

local copy of the gradient and all processors perform global
synchronization to compute the global gradient [5], [6], [7].
These synchronizations are performed η ≥ 1 times during
an SGD epoch.

The η parameter can be seen as a trade-off parameter
between performance and staleness. Here η = 1 being the
best performing in parallel while being possibly the worst
in terms of staleness. Furthermore, η = |Γ| (synchronize
following each update) being the best in terms of staleness,
because it becomes equivalent to sequential SGD, and worst
in terms of performance due to step-by-step synchroniza-
tion. In fact, we show in this work that η is inversely
proportional to the volume of communication incurred dur-
ing an SGD epoch (see Section 3.5 for details). However,
the synchronization overhead is what makes the algorithm
inefcient for high η values. Very frequent synchronization
points (barriers) would drastically degrade the performance
even with a very slight computation and/or communication
imbalances.

In order to achieve performant and scalable ASGD with
tolerable staleness in distributed-memory systems, we pro-
vide the following contributions:

• We propose a communication-efcient row-parallel algo-
rithm for ASGD with η synchronizations. Our algorithm
has novel communication mechanics such that the com-
munication volume incurred is the bare essential with no
extra unnecessary communication.

• With an in-depth analysis of the communication and the
staleness in distributed ASGD, we formulate a minimiza-
tion problem solution of which minimizes the volume of
communication as well as the staleness.

• We convert the minimization problem to a hypergraph
partitioning problem and propose a novel cutsize metric
called power of connectivity the minimization of which
encapsulates minimizing the staleness and volume in
distributed ASGD.

• We utilize the well-known recursive bipartitioning
scheme to propose a partitioning algorithm that correctly
encodes the power of connectivity metric. The partition-
ing algorithm recursively uses a state-of-the-art partition-
ing tool to obtain two-way partitions and then formulate
sub-hypergraphs with proper net splitting and cost up-
dates to realize the desired cutsize metric.

The rest of the paper is organized as follows: Section 2
provides preliminaries on how to obtain the factorization
with SGD and on the hypergraph partitioning problem.
In Section 3 the proposed row-parallel ASGD algorithm is
discussed in detail and an in-depth analysis for the commu-
nication volume as well as the staleness in this algorithm
is provided. The hypergraph model and the novel cutsize
metric are discussed in Section 4. In Section 5, the experi-
mental evaluations are presented. Related work is given in
Section 6 and the paper is concluded in Section 7.

2 PRELIMINARIES

2.1 Computing Factor Matrices with SGD

SGD can be used to approximate the factorization (R ≈
WH

>) by optimizing a loss function. For matrix comple-
tion, given R, W and H, the approximation error of a

known rating rij ∈ Γ is computed as rij − 〈wi,hj 〉. We
use SGD to optimize the sum of squared error loss function
with L2 regularization, which is one of the most commonly
used loss functions [2], [7], [8], [9], as

argmin
W,H

L(Γ,W,H)=
∑

rij∈Γ

(rij − 〈wi,hj〉)
2

+ γ(‖wi‖
2 + ‖hi‖

2), (1)

where ‖·‖ is the L2 norm and γ is called the regularization
factor. An SGD epoch iterates over each rating entry rij ∈ Γ

and updates the feature vectors wi and hj according to the
gradient of the respective parameter:

wi = wi + ∇WL(Γ,W,H) and

hj = hj + ∇HL(Γ,W,H),

which yields

wi = wi + ((rij − 〈wihj〉)hj + γwi) and (2)

hj = hi + ((rij − 〈wihj〉)wi + γhj), (3)

where  denotes the step size. Algorithm 1 shows the
sequential SGD.

Algorithm 1 Sequential SGD

1: Input: R,W,H, F, , γ
2: while not converged do
3: for each rij ∈ R do
4: wi = wi + ((rij − 〈wi,hj〉)hj + γwi)
5: hj = hi + ((rij − 〈wi,hj〉)wi + γhj)
6: end for
7: end while

2.2 Hypergraph Partitioning

A hypergraph H = (V ,N) is a generalization of graph
where a net (hyper-edge) n ∈ N connects a set of vertices
(and will be treated as a set of vertices n ⊆ V) and a vertex
v ∈ V can be connected by multiple nets. Each net n is
assigned a cost c(n) and each vertex v is assigned a weight
w(v).

A K-way partition ΠK(H) = {V1,V2, . . . ,VK} divides
the vertices of H into K mutually exclusive and exhaustive
parts. Given ΠK(H), a net n ∈ N is called cut if it connects
vertices in two or more parts, and is called internal other-
wise. We dene Λ(n) as the set of parts that n connects. That
is,

Λ(n) = {Vk ∈ Π
K(H) | Vk ∩ n 6= Ø}.

Furthermore, λ(n) = |Λ(n)| is called the connectivity of n.
Hypergraph Partitioning (HP) refers to obtaining ΠK(H)
while optimizing an objective function dened over N and
maintaining a balance constraint between the parts dened
over V . The constraint is to maintain balance on the part
weights as

Wk ≤ (1 + )Wavg, ∀k ∈ [[1..K]].

Here, Wk =


v∈Vk
w(v), Wavg =



k Wk/K and  is
an imbalance factor. The two mostly common objective
functions are minimizing the cut-net metric

cutnet(Π) =
∑

n such thatλ(n)>1

c(n) (4)

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

3

and the connectivity−1 metric

conn−1(Π) =
∑

n such thatλ(n)>1

c(n)(λ(n)− 1). (5)

The above-mentioned cutsize metrics do not encode our
objectives. Therefore, a new cutsize metric is proposed and
discussed in Section 4.

3 ROW-PARALLEL ASGD ALGORITHM WITH η

SYNCHRONIZATIONS

3.1 Preliminaries

Row-parallel execution on a matrix means that each pro-
cessor will be responsible for the computations associated
with a row or a set of rows of that matrix. Therefore, the
matrix is partitioned and distributed to processors in a
rowwise fashion. In the context of ASGD, aK-way partition
ΠK

rowwise(R) = {R1, R2, . . . , RK} on the rows of R also
imposes a conformal partition on the rows of factor matrix
W. In row-parallel ASGD, processor pk iterates over the
ratings in sub-matrix R

k, formulated by the R-matrix rows
in Rk, and updates the respective feature vectors according
to (2) and (3) to obtain local copies of W and H. Since each
row block Rk, k ∈ [[1..K]], is assigned to a distinct processor,
the row block W

k is exclusively used and updated by a
single processor during an ASGD epoch. Therefore, there is
only one copy of each W-matrix row, whereas there might
be multiple copies of individual H-matrix rows at different
processors. Row-parallel execution is usually preferred in
SGD because the number of items is generally much less
than the number of users which means the amount of
data to be communicated (H) is small compared to W.
Nevertheless, all the discussions, analyses, and algorithms
are applicable in a dual manner to a column-parallel SGD
algorithm.

Since the rating matrix is sparse, the rowwise partition-
ing entails a categorization on the columns of R as follows:
If a column’s nonzeros are exclusive to a single row block
Rk, then this column is called local to Rk. Otherwise, the
column is called a linking column since it “links” multiple
row blocks as it has nonzeros in each of these row blocks.
We use Λ(cj) to denote the set of row blocks linked by R-
matrix column cj , and λ(cj) = |Λ(cj)| to denote their count.
We will also use Λ(hj) to represent the set of processors
corresponding to parts in Λ(cj) and λ(hj) as their count.
Here, without loss of generality, we assume that the row
block Rk is assigned to processor pk.

Using the column categorization, the task of updat-
ing H-matrix row hj is distributed among processors as
follows: If the the corresponding R-matrix column cj is
local to Rk, i.e., Λ(cj) = {Rk}, then updating hj will be
exclusively performed by processor pk. Otherwise, i.e., cj is
a linking column, then hj will be updated by all processors
in Λ(hj). In this case, each of the λ(cj) processors will asyn-
chronously update hj and will have a local copy of hj . One
of the processors in Λ(cj), called the owner of hj (denoted
by owner(hj) hereafter) will be responsible for averaging all
of the local copies and obtaining the nal hj . At this point,

R4

R3

R2

R1

ci

?

?

?

?

cj

?

?

ck

?

?

?

?

?

Local columns Linking columns

W
4

W
3

W
2

W
1

H
1 lo
ca
l

H
2 lo
ca
l

H
3 lo
ca
l

H
4 lo
ca
l

H
1 o
w
n
ed

H
2 o
w
n
ed

H
3 o
w
n
ed

H
4 o
w
n
ed

H
1 lo
ca
l

H
1 o
w
n
ed

H
1 n
o
n
lo
ca
l

H
1

Fig. 1: A sample 4-way rowwise partition on R and the
corresponding column categorization as well as the H-
matrix row categorization. The gure shows that the W-
matrix rows are partitioned conformably with the rows of
R, and the local rows of H are partitioned conformably
with the local columns of R. Moreover, the H-matrix rows
that correspond to linking columns (will be communicated)
are partitioned into {H1

owned,H
2
owned, · · · }. At the top of the

gure, a sample H-matrix local to p1 is shown. The H1
nonlocal

portion of this matrix is a subset of the H-rows owned by
p2, p3 and p4.

processor pk has three different categories for the rows of H
matrix: local, owned and nonlocal respectively dened as

H
k
local = {hj ∈ H | λ(hj) = 1 ∧ Λ(hj) = {pk}},

H
k
owned = {hj ∈ H | λ(hj) > 1 ∧ pk ∈ Λ(hj)

∧ pk = owner(hj)}, and

H
k
nonlocal = {hj ∈ H | λ(hj) > 1 ∧ pk ∈ Λ(hj)

∧ pk 6= owner(hj)}.

Fig. 1 shows an example 4-way partition on a sparse
matrix to clarify the induced column categorization as well
as the H-matrix row classication. For this purpose, the
rows and columns of a given R matrix are reordered as
follows: The rows inRk are ordered after the rows inR(k−1),
whereas the ordering of the rows in the sameRk is arbitrary.
The local columns of Rk are ordered after those of R(k−1),
whereas the ordering of the local columns of the same Rk is
arbitrary, and the linking columns are ordered last.

This row-column re-ordering scheme incurs a
singly-bordered block-diagonal form of a sparse matrix,
where linking columns constitute the column border.
In the block-diagonal part of the re-ordered R-matrix,

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

4

off-diagonal blocks do not contain any nonzero. In Fig. 1,
the linking columns ci, cj and ck in the column border
respectively connect row blocks Λ(ci) = {R1, R2, R3},
Λ(cj) = {R1, R3} and Λ(ck) = {R1, R3, R4}.

In Fig. 1, for clarifying H-matrix row categorization, the
linking columns in the column border of R are ordered
as follows: The linking columns corresponding to the H-
matrix rows owned by processor k are ordered after those
by processor k − 1. Furthermore, to clarify nonlocal rows of
H

1, those columns that link R1 but owned by a processor k
other than processor 1 are ordered at the very beginning of
the R-matrix columns corresponding to the rows of Hk.

3.2 The PASGD Algorithm (η = 1)

The communication in row-parallel ASGD is dened over
linking columns of theRmatrix. When there is one synchro-
nization point (η = 1), processor pk needs to communicate
its owned rows and nonlocal rows of H, once after each
ASGD epoch. The communication consists of dual sparse
reduce and expand operations. During the sparse reduce, pk
sends its local copies of the rows (feature vectors) inH

k
nonlocal

to their respective owners, and receives the local copies of
the rows in H

k
owned from other processors. pk computes

the nal rows in H
k
owned by averaging the received local

copies as well as its own local copy. Then, during the sparse
expand, pk sends the nal rows in H

k
owned to the processors

that will use them in the next epoch, and receives the rows
in H

k
nonlocal from their respective owners.

Algorithm 2 η-PASGD on processor pk

1: Input: Rk,W,H, F, , γ
2: while not converged do
3: for t = 1 to η do
4: for each rij ∈ R

k:t do
5: wi = wi + ((rij − 〈wi,hj〉)hj + γwi)
6: hj = hi + ((rij − 〈wi,hj〉)wi + γhj)
7: end for
8: Sparse REDUCE on H-matrix rows
9:  SEND H

k:t
nonlocal, RECEIVE H

k:t
owned

10: AVG to compute nal Hk:t
owned

11: t+1 = (t mod η) + 1
12: Sparse EXPAND on H-matrix rows

13:  SEND nal Hk:t
owned, RECEIVE nal Hk:t+1

nonlocal

14: end for
15: end while

3.3 The η-PASGD Algorithm (η > 1)

The η-PASGD algorithm (shown in Algorithm 2) divides
the epoch into η sub-epochs such that the feature vectors
updated in sub-epoch t, t ∈ [[1..η]], are communicated
before the beginning of the next sub-epoch. In η-PASGD, the
ratings (nonzeros) of the local rating matrix R

k assigned to
pk are further divided into η sets such that at sub-epoch
t ratings in R

k:t ⊆ R
k are processed (see lines 4-7 of

Algorithm 2).
As a consequence of dividing the epoch into multiple

sub-epochs, not all the processors in Λ(hj) will compute a
local copy of the H-matrix row hj at every sub epoch. That

p7

p6

p5

p4

p3

p2

p1

p7

p6

p5

p4

p3

p2

p1

p7

p6

p5

p4

p3

p2

p1

p7

p6

p5

p4

p3

p2

p1

p7

p6

p5

p4

p3

p2

p1

η = 1 η = 4

t1 t2 t3 t4

Fig. 2: Sparse reduce and expand operations of hj when η=
1 and η=4. When η = 1, Λ(hj) = {p1, p2, p3, p4, p5, p6, p7}
and owner(hj) = p2. When η=4, Λ1(hj) = {p2}, Λ

2(hj) =
{p3, p5}, Λ

3(hj) = {p1, p7}, and Λ4(hj) = {p4, p6} where
owner1(hj) = p2, owner2(hj) = p3, owner3(hj) = p7, and
owner4(hj)=p4.

is, depending on which nonzeros of R-matrix column cj

will be processed in sub-epoch t, the value of λ(hj) might
not be accurate for sub-epoch t. Therefore, we dene per-
sub-epoch connectivity set Λt(hj) and connectivity λt(hj)
to respectively denote the processor set and processor count
updating hj at sub-epoch t. The H-matrix row assignment
to processors is changed accordingly and the owner assign-
ment becomes per sub-epoch as well. At sub-epoch t, the
owner of hj ∈ H is given by ownert(hj). The per-sub-epoch
H-matrix row categories at processor pk are given by

H
k:t
local = {hj ∈ H | λt(hj) = 1 ∧ Λ

t(hj) = {pk}},

H
k:t
owned = {hj ∈ H | λt(hj) > 1 ∧ pk ∈ Λ

t(hj)

∧ pk = ownert(hj)}, and

H
k:t
nonlocal = {hj ∈ H | λt(hj) > 1 ∧ pk ∈ Λ

t(hj)

∧ pk 6= ownert(hj)}.

Like PASGD, the communication in η-PASGD consists
of sparse reduce and expand operations. During the sparse
reduce at sub-epoch t (line 8 of Algorithm 2), processor pk
sends the feature vectors inH

k:t
nonlocal to their respective own-

ers, and receives local copies of the feature vectors inH
k:t
owned

from the processors that compute them. pk computes the
nal feature vectors in H

k:t
owned by averaging received local

copies as well as its own local copy. Then, during the sparse
expand of sub-epoch t (line 10 of Algorithm 2), pk sends
the nal feature vectors in H

k:t
owned to the processors that

will use them in the next sub-epoch (in t+1 = t mod η + 1),
and receives the feature vectors that it will use in t+1 (i.e.,

H
k:t+1

nonlocal) from their respective owners. Unlike PASGD, the
sparse reduce and expand operations are not dual because,
for each H-matrix row hj , Λ

t(hj) and ownert(hj) differ
for different t values. The running time of the algorithm is
linear in the number of nonzeros of the rating matrixR (i.e.,
Θ(nnz(R))).

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

5

Fig. 2 shows the difference between PASGD and
η-PASGD. In the gure, sample reduce/expand commu-
nications of row hj are shown where λ(cj) = 7. Circles
with a pattern represent owner processors whereas shaded
processors are those contributing to the computation of
hj . The gure shows how the owner assignment and the
value of λt(hj) change per sub-epoch and how the duality
property is no longer valid when η > 1.

3.4 Efcient communication setup

The word “sparse” in sparse reduce/expand operation
comes from the fact that these reduce/expand operations
are performed on a subset of the processors. In order to
efciently realize the sparse expand and reduce communi-
cations, we use a compressed storage similar to the Com-
pressed Storage by Rows (CSR) format for indexing the fea-
ture vectors to be sent/received. The sparse reduce/expand
operations are achieved via point-to-point messages. A re-
duce message at sub-epoch t from psrc to pdst contains all the
feature vectors updated by psrc in t and owned by pdst. An
expand message at sub-epoch t from psrc to pdst contains all
the feature vectors owned by psrc and will be used by pdst in
t+1.

The point-to-point messages to be sent by processor pk
are stored and accessed at sub-epoch t using two arrays. The
rst array stores the message headers, where each header is
a tuple (pdst, ptr). The pdst entry is the rank of the processor
to which the message will be sent. The ptr entry is a pointer
to the rst H-matrix row index in the second array which
holds indices of H-matrix rows to be communicated during
t. The indices in the second array are stored such that rows
to be sent/received to/from the same processor are accessed
consecutively. The point-to-point messages to be received
by processor pk are stored and accessed at sub-epoch t in a
similar way, where the rst array holds (psrc, ptr) tuples.

Fig. 3 shows a high-level view of the efcient commu-
nication structure. In the gure, the CSR-like arrays are
abstracted with the functions f(p, t) and g(t). The gure
shows how the communication takes place during the re-
duce sparse phase followed by the expand sparse phase of
Algorithm 2.

3.5 Communication and Staleness Analysis

The efciency of the proposed η-PASGD algorithm is based
on two important conditions: The rst condition is that
when the ratings/nonzeros in R-matrix column cj are pro-
cessed in multiple sub-epochs, the nonzeros of cj that are
assigned to processor pk should be processed in one and
only one sub-epoch. That is,

cj ∩R
k:t∩R

k:z = Ø, ∀j ∈ [[1..N]], ∀t, z ∈ [[1..η]]∧ t 6= z (6)

is satised. Here, cj is used to denote the set of nonzeros
in column j of R. The second condition is that σj , which is
dened as the number of sub-epochs wherein hj is updated
by any processor, should satisfy

σj =

{

η if λ(cj) > η,

λ(cj) otherwise
. (7)

These two conditions will have four implications on our
discussion:

1) for each of the consecutive sub-epochs, the set of pro-
cessors that update hj are completely different. That is,
for every consecutive sub-epochs t and t+1, Λt(hj) ∩

Λt+1

(hj) = Ø, ∀ hj s.t. Λ(cj) > 1.
2)

η
t=1 λ

t(hj) = λ(cj), and
3) the maximum η value required to theoretically achieve

a stale-free execution is equal to max1≤j≤N{λ(cj)} and
will be denoted by λmax (note that the value of λmax can
be at most K for a K-way partition on R).

4) σj increases/decreases with increasing/decreasing λ(cj)
and η.

Here, we analyze the communication volume incurred
as well as the staleness during the η-PASGD algorithm
based on conditions (6) and (7). H-matrix row hj incurs
(λt(hj)− 1)F words of reduce communication volume and

λt+1

(hj)F words of expand communication volume at sub-
epoch t. This is because, in expand, the owner of hj in sub-
epoch t+1 is different from that in t. Then, the total volume
incurred by hj in an SGD epoch is given by

volume(hj) = (λ1(hj)− 1 + λ2(hj))× F +

(λ2(hj)− 1 + λ3(hj))× F +

(λ3(hj)− 1 + λ4(hj))× F +

...

(λσj−1(hj)− 1 + λσj (hj))× F +

(λσj (hj)− 1 + λ1(hj))× F.

Note that each λt(hj) term appears twice in the above
equation, therefore

volume(hj) = (

σj∑

t=1

(2λt(hj)− 1))× F.

Here, because of conditions (6) and (7), λ(cj) =
σj

t=1 λ
t(hj). The total volume that hj incurs per SGD epoch

can be expressed as

volume(hj) =

{

(2λ(cj)− σj)× F if σj > 1

2(λ(cj)− 1)× F if σj = η = 1
.

which can be expressed in terms of λ(cj) and η as

volume(hj) =







0 if λ(cj) = 1

2(λ(cj)− 1)× F if η = 1,

λ(cj)× F if 1 < λ(cj) ≤ η,

(2λ(cj)− η)× F if λ(cj) > η

.

(8)

We dene a staleness metric for the η-PASGD algorithm
to measure how many times a stale version of hj is used by
any processor in an SGD epoch. At sub-epoch t, we assume
that ownert(hj) updates non-stale version of hj whereas
λt(hj) − 1 processors update stale version of hj . Then, the

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

6

H
k
local

H
k
owned

H
k
nonlocal

t = η

Sparse REDUCE on pk

t = 1

t = η

t = 1

reduce buffer

H
k

se
n
d

re
cv

w
ri
te

re
ad

{pa, pc, . . .}

{pb, pc, . . .}

f(px, t)

Send-Msg(px, data)

List of indices

data

f(py, t)

Recv-Msg(py , data)

List of
indices

da
ta

{pc, pf , . . .}

{pa, pe, . . .}

px, t

py, t

p
y w

ri
te

.

.

.

.

.

.

.

.

.

.

.

.

t = η

Sparse Expand on pk

t = 1

t = η

t = 1

se
n
d

re
cv

w
ri
te

re
ad

{pa, pf , . . .}

{pa, pb, . . .}

f(pv, t)

Send-Msg(pz , data)

List of indices

data

f(pz, t)

Recv-Msg(pv , data)
List of indicesd

ata

{pb, pd, . . .}

{pb, ph, . . .}

pv, t

pz, t

pv .
.
.

.

.

.

.

.

.

.

.

.

g(t)

List
of

ind
ices

t

Fig. 3: Communication structure of the η-PASGD algorithm. The gure shows how the sparse reduce (left) and sparse
expand (right) operations are performed in an SGD epoch on processor pk. For the sparse reduce, the upper left part shows
how local copies of feature vectors are sent. At sub-epoch t, pk selects processor px to send to, and with using px and t it
can retrieve the list of Hk-row indices to be sent to px in t. Using those indices, pk reads the actual data (Hk rows) and
packs them into a message to px. The lower left part of the gure shows how a message is received. pk already knows
which indices will be received from which processor at each sub-epoch. At sub-epoch t, pk selects processor py to receive
from, and with using py and t it can retrieve the list of Hk-row indices to be received from py in t. At the same time,
pk receives a message from py . The received data can be written in an associative manner to a reduce buffer using the
retrieved indices. After all messages of sub-epoch t are received, pk averages the feature vectors in the receive buffer and
writes them back (in a scattered manner) to their proper locations in H

k
owned. The sparse expand takes place in a similar

manner. The only difference is that the reduce buffer is not needed thus expand data can be written directly to H
k

per-epoch staleness of hj is given by

staleness(hj) = (λ1(hj)− 1)× F +

(λ2(hj)− 1)× F +

(λ3(hj)− 1)× F +

...

(λσj−1(hj)− 1)× F +

(λσj (hj)− 1)× F

which can be expressed as

staleness(hj) = (λ(cj)− σj)× F

and in terms of λ(cj) and η as

staleness(hj) =

{

(λ(cj)− η)× F if λ(cj) > η

0 otherwise
(9)

following conditions (6) and (7).
In Fig. 2, the volume and staleness of hj are respectively

12F and 6F when η = 1. When η = 4, these metrics
respectively reduce to 10F and 3F .

As seen in (8) and (9) , both volume and staleness
associated with hj decrease with decreasing λ(cj), whereas
both of them decrease with increasing η. Therefore, the
total staleness and volume in an SGD epoch, respectively


hj
staleness(hj) and



hj
volume(hj), can be reduced by

minimizing the total connectivity of the linking columns
∑

λ(cj)>1

λ(cj) (10)

in a partition of the rating matrix R, and/or by maximizing
η.

Although minimizing the metric in (10) encodes mini-
mizing the total staleness and volume, it does not encode
a balanced staleness among feature vectors. For instance, in
an extreme case, half of theH-matrix rows corresponding to
the linking columns of R-matrix might have a connectivity
of K and the other half have a connectivity of 2. This would
mean that those H-matrix rows with connectivity of 2 are
more favored in the context of the nal gradient because
they have less staleness; and this would potentially lead to
training bias.

Although maximizing η has the nice property of elimi-
nating staleness as well as reducing communication volume,
it has a major drawback of high synchronization overhead.
It is well known that high synchronization overhead signif-
icantly prohibits the scalability of parallel algorithms.

For the reasons given above, we propose to minimize
the maximum linking column connectivity (λmax) metric.
Minimizing λmax encodes maintaining balance among con-
nectivities and indirectly reducing the total connectivity.
Furthermore, minimizing λmax would decrease the mini-
mum η value required for stale-free execution. This in turn
corresponds to achieving a stale-free parallel SGD algorithm
with minimum synchronization overhead. In other words,
setting η to a value larger than λmax will not have any effect
on (8) and (9) compared to setting η to be equal to λmax.

Then, we dene our rowwise partitioning problem on R

as follows:

Problem 1 (Minimize maximum connectivity). Given a
sparse rating matrix R and number of processors K , nd a

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

7

K-way partition ΠK
rowwise(R) = {R1, R2, . . . , RK} such that

λmax = max
1≤j≤N

{λ(cj)}

is minimized while satisfying the balance constraint

nnz(Rk)
  

nonzero count inRk

≤ (1 + )
nnz(R)

K
  

avg nonzero count

∀k ∈ [[1..K]].

In the following section we propose a method based on
hypergraph partitioning to approximate the minimization
Problem 1.

4 AN HP MODEL FOR REDUCING COMMUNICATION

VOLUME AND STALENESS

We encapsulate decreasing the total volume as well as
the staleness of the η-PASGD algorithm via a hypergraph
partitioning (HP) model. In the HP model H = (V ,N),
there exists a vertex vi ∈ V for each row ri of the rating
matrix R. vi is assigned a weight equal to the number of
nonzero entries in ri, that is, w(vi) = |{rij ∈ ri | rij 6= 0}|.
In H, there exists a net nj ∈ N for each R-matrix column
cj . Since F can be factorized out in (9) and (8), we assign
the cost of one to each net.

Our goal in partitioning H is to encode the minimiza-
tion given in Problem 1 such that minimizing the cutsize
would encapsulate minimizing the λmax metric. A typical
K-way partition on H with the objective of minimizing
the connectivity−1 metric (5) does not correctly encodes
minimizing the λmax objective. For this reason, we propose
a new cutsize metric called the power-connectivity metric as

pow-conn =
∑

n such thatλ(n)>1

λ(n)ρ, (11)

where ρ ≥ 2. This metric encodes minimizing λmax because
each cut net contributes the ρth power of its connectivity to
the cutsize. For instance, if a partitioning algorithm deciding
between two choices of nets to be on the cut: (i) x nets each
with connectivity λ or (ii) one net with connectivity λ +
1 and the condition x × λρ < (λ + 1)ρ is satised, then
according to our new metric the algorithm should prefer
the former choice in order to minimize the pow-conn metric.
For example, when x = 2, λ = 2 and ρ = 2 then the former
choice will incur a cost of 8 to the cutsize whereas the latter
will incur a cost of 9.

Existing HP algorithms and tools do not encapsulate
minimizing the pow-conn metric. Therefore, we propose
a partitioning scheme based on recursive bipartitioning to
enable encoding the new metric. Recursive bipartitioning
(RB) is a common scheme to obtain K-way partitions by
recursively bipartitioning an input hypergraph. The RB
scheme generates a tree of lgK levels. Given an initial
hypergraphH0

0, at each level ` ∈ {0, 1, . . . , lgK−1} there are
2` subhypergraphs H`

0,H
`
1, . . . ,H

`
2`−1; each successive pair

of which are constructed from two-way partitioning (Π2) of
a parent hypergraph in level `− 1 and will be bipartitioned
to construct two subhypergraphs in level `+ 1.

Given H`
k, 0 ≤ k ≤ 2` − 1, constructing subhypergraphs

H`+1
2k and H`+1

2k+1 using Π2(H`
k) = {VL,VR} is achieved as

follows: The vertex sets of H`+1
2k and H`+1

2k+1 are respectively

VL and VR. The net sets of H`+1
2k and H`+1

2k+1 are constructed
according to the net categorization (cut or internal) by
Π2(H`

k) while following a strategy to maintain a correct
cutsize metric.

In order to maintain the cut-net metric given in (4), cut
nets are removed and internal nets are inherited to their
respective subhypergraphs following VL and VR. This way,
each cut net contributes its cost once to the cutsize. If each
cut net is split into two sub-nets assigned to the left and
right sub-hypergaphs, then each net can be split at most
K−1 times during RB, where K is the desired number of
partitions. This directly allows encoding the connectivity-1
metric given in (5) as proposed in [10] since each net
contributes its cost to the cutsize conn−1 times during RB.
The RB framework has also been utilized in other works
to allow hypergraphs to encode different metrics such as
the λ(λ − 1) metric in [11] and the sum of external degrees
(SOED) metric in [12].

We provide the following theorem to justify and explain
our strategy for encoding the pow-conn metric in RB.

Algorithm 3 RB-based HP algorithm encoding λ2 metric

Require: H = (V ,N), K
1: H0

0 = H
2: for each net n ∈ N 0

0 do
3: c(n) = 4  initial cost
4: λcurr(n) = 1
5: n̂ = n  n̂ is the ancestor of n
6: end for
7: for ` ← 0 to log2 K − 2 do
8: for k ← 0 to 2` − 1 do

** Update the costs of split nets **

9: for each n ∈ N `
k s.t. n is a split net do

10: c(n) = 2λcurr(n̂) + 1
11: end for
12: Π2 = {VL,VR} ← BIPARTITION(H`

k)

** Update λcurr for ancestors of cut nets**

13: for each {n ∈ N `
k |n ∩ VL 6= Ø ∧ n ∩ VR 6= Ø} do

14: λcurr(n̂) = λcurr(n̂) + 1
15: end for

** Apply net splitting **

16: NL = {nL = n ∩ VL, ∀n ∈ N `
k | nL 6= Ø}

17: NR = {nR = n ∩ VR, ∀n ∈ N `
k | nR 6= Ø}

** Form the sub-hypergraphs **

18: H`+1
2k = (VL,NL)

19: H`+1
2k+1 = (VR,NR)

20: end for
21: end for
22: ` = logK − 1
23: for k ← 0 to 2` do
24: for each n ∈ N `

k s.t. n is a split net do
25: c(n) = 2λcurr(n̂) + 1
26: end for
27: ΠK ← ΠK ∪ (Π2 = BIPARTITION(H`

k))
28: for each {n ∈ N `

k |n ∩ VL 6= Ø ∧ n ∩ VR 6= Ø} do
29: λcurr(n̂) = λcurr(n̂) + 1
30: end for
31: end for
32: return ΠK

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

8

1 c(n) = 4

n is cut, update λcurr(n̂)
nL and nR inherit the cost of n
n contributes 4 to the cutsize

2

λcurr(n̂) H0
0

nL nR

n

H1
0 H1

1

2
3

update c(nL) = 2× 2 + 1
nL is cut, increase λcurr(n̂) to 3
nL contributes 5 to the cutsize

c(nL)=4
H1

0 H1
1

V1 V2

λcurr(n̂)

nL nR

n
H0

0

update c(nR) = 2× 3 + 1
nR is cut, increase λcurr(n̂) to 4
nR contributes 7 to the cutsize

3
4

V1 V2 V3 V4

λcurr(n̂)

n

nL nR

H0
0

c(nL)=5
c(nL)=5
c(nL)=7

Fig. 4: Demonstrating how a net n contributes the square of its connectivity (i.e., λ(n)2) to the cutsize using 4-way
partitioning of a sample hypergraph via recursive bipartitioning.

Theorem 1. Let λcurr(n) > 1 denote the current connectivity
of a net n just before the current RB step. That is, net n is
split λcurr(n) − 1 times during the previous RB steps. Given ρ,
it is possible to encode the λρ metric in RB-based hypergraph
partitioning after assigning an initial cost of c(n) = 2ρ to each
net n and update the cost as c(n) = (λcurr(n) + 1)ρ−λcurr(n)

ρ

after each bipartitioning step.

Proof. Assume that at the current RB level the cutsize al-
ready encodes cutsizecurr =



n λcurr(n)
p. The next time net

n becomes cut it contributes (λcurr(n)+1)ρ−λcurr(n)
ρ to the

cutsize. Therefore, the new cutsize becomes cutsizecurr+1 =
cutsizecurr + (λcurr(n) + 1)ρ − λcurr(n)

ρ which is the correct
cutsize.
Base case: The rst time a net n becomes cut, its λcurr(n) is
2 and after that this value increases by 1 for every time n
becomes cut. So, the second time n becomes cut its cost is
updated as 3ρ − 2ρ which is correct given at that point the
value λcurr(n) is equal to 3.

Algorithm 3 shows RB-based partitioning for ρ = 2
following the procedure in Theorem 1. The initial costs and
λcurr(n) values for each net n are given in lines 2-4. The
initial cost of 4 (and connectivity of 2) is given because the
rst time a net becomes cut it will connect two parts and
should contribute 22 = 4 to the cutsize. The hat notation
n̂ is assigned (line 5) to identify the ancestor net (i.e., in
H0

0) of the successor nets as a result of splitting. n̂ helps
unify the λcurr(n̂) metric along all split nets in different
RB levels and different sub-hypergraphs per level. Then,
we process the RB-tree in a breadth-rst manner which
is achieved via the two nested for loops at lines 7 and 8.
At each level `, H`

k is bipartitioned using a state-of-the-
art HP algorithm (line 12). Before this step, the cost of
nets in N `

k that are children of split nets in level ` − 1
is updated according to λcurr (lines 9-11). The cost update
function in line 10 follows the update strategy in Theorem 1
as (λcurr(n) + 1)2 − λcurr(n)

2 = 2λcurr(n) + 1. Note that
the cutsize metric used in bipartitioning can be either of (4)
or (5) since both metrics become equivalent when K = 2.
We only update the connectivity of nets that become cut in
N `

k (lines 13-15). In lines 16 to 19, the net sets NL and NR

are formulated respectively forH`
2k andH`

2k+1 such that in-
ternal nets are inherited to their respective parts (following

Π2) and cut nets are split to both subhypergraphs. The last
level of the RB-tree is processed in lines 22-31 to obtain the
nal K-way partition.

The rst part of the Algorithm 3 (lines 7-21) has K−2
iterations. The running time of each iteration is dominated
by the BIPARTITION operation in line 12. The running time
of this operation depends on the hypergraph bipartitioning
tool used. Assuming PaToH [10] is used, which is the
fastest serial hypergraph partitioning tool, the bipartition-
ing operation has two computationally heavy phases: the
coarsening phase with a running time proportional to the
sum of squares of net degrees, and the renement phase
with a running time proportional to the number of pins in
the hypergraph. Since the former is asymptotically higher
than the latter, then we can assume the bipartitioning phase
is O(



n |n|2). Although, this is a loose upper bound since
PaToH disregards nets with degrees higher than a certain
threshold (e.g., 50 or 100) thus making the coarsening
phase much less computationally expensive compared to
the expected upper bound. The correctness of the algorithm
follows the correctness of Theorem 1.

Fig. 4 shows an example of how the proposed RB-based
method encapsulates the square connectivity of a net n
during partitioning. In the left part of the gure, H0

0 is
bipartitioned and two sub-hypergraphs, H1

0 and H1
1, are

formulated. Net n is cut in the bipartition so this net is
split into nL and nR respectively in H1

0 and H1
1. In the

middle part, the cost of nL is updated before obtaining a
bipartition on H1

0 (lines 24-26 of Algorithm 3), and then H1
0

is bipartitioned to obtain two of the four nal parts V1 and
V2. Since nL is cut in this bipartition, the λcurr of its ancestor
n̂ is updated from 2 to 3 since n̂ currently connects three
parts. In the right part, H1

1 is processed similar to H1
0 to

obtain the last two parts V3 and V4. The nal connectivity
of n is 4 and it contributed 4+5+7 = 16 = 42 to the cutsize.

5 EXPERIMENTAL EVALUATIONS

5.1 Setting

5.1.1 Evaluated Methods and Implementation Details

Our experiments are designed to evaluate the η-PASGD al-
gorithm on distributed-memory systems. We implemented
the algorithm in C and used the Message Passing Interface
(MPI) to handle the inter-processor communications. Our

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

9

implementation follows the efcient communication setup
described in Section 3.4. We use the following metrics in
our evaluations: staleness (as given in (9)), communication
volume (as given in (8)), SGD iteration time, and root
of mean squared error (RMSE) of test data. We conduct
experiments to address the following questions:

• Do the staleness and volume metrics decrease as η in-
creases?

• Howmuch does obtaining an HP-based rowwise partition
on the rating matrix that follows the pow-conn metric
affect the evaluation metrics compared to a random parti-
tion?

• Does the algorithm scale as the number of processors (K)
increases?

We use two methods in our evaluations. The rst,
RAND, denotes running the η-PASGD algorithm on a rating
matrix that is row-wise partitioned randomly in a load-
balanced fashion. The second, HP-λ2, denotes running the
η-PASGD algorithm on a rating matrix that is row-wise
partitioned to reduce the λ2 metric according to Algorithm 3
in a load-balanced fashion. In order to obtain bipartitons on
the (sub)hypergraphs (lines 12 and 27 in Algorithm 3), we
use PaToH [10] in SPEED mode with default parameters.

For both RAND and HP-λ2, the per-sub-epoch owner
assignment of each H-matrix row is done randomly
in a communication-respecting manner. In other words,
ownert(hj) ∈ Λt(hj) for an H-matrix row hj at sub-epoch
t. This guarantees that the total volume does not increase
as a result of hj ’s owner assignments. The nonzero-to-
sub-epoch distributions are performed such that the con-
dition (6) is satised.

We conduct our experiments on a computing cluster
with 88 nodes connected by a high-speed InniBand net-
work with non-blocking fat tree topology. Each node is
equipped with a 128-core AMD EPYC 7742 processor and
a 256GB of RAM.

5.1.2 Dataset

We use ve sparse matrices that are well known for evaluat-
ing latent factor-based recommender systems as datasets in
our experiments (see Table 1). Amazon-Electronics con-
tains ratings of purchases under the electronics category in
Amazon between 1997 to 2014 [13]. Goodreads Reviews

contains ratings of books by the users of Goodreads
website [14]. Movielens Ratings, Netflix Ratings

and Yahoo! Music Track1 are taken from several open
source publications [15], [16], [17]. The properties of the
matrices (number of rows, number of column, number of
nonzeros and density) are provided in Table 1. Here, density
of a matrix is the ratio of its nonzero count to the product of
its dimensions.

TABLE 1: Datasets and their properties

Dataset M N nnz Density

Amazon Electronics 4.202M 0.476M 7.824M 3.91×10
−06

Goodreads Reviews 0.465M 2.080M 15.740M 1.63×10
−05

Movielens Ratings 0.271M 0.045M 26.024M 2.13×10
−03

Netflix Ratings 0.480M 0.018M 100.481M 1.17×10
−02

Yahoo! Music Track1 1.001M 0.625M 252.800M 4.04×10
−04

5.2 Evaluations and Comparisons

5.2.1 Effect of Increasing η on Staleness, Volume, and

RMSE

To study the effect of increasing η on staleness, volume,
and RMSE, we run both RAND an HP-λ2 on 512 processors
using η = {2, 4, . . . , 256}. Our results using the ve dataset
matrices are shown in Fig. 5. In the gure, the x-axis repre-
sents the number of sub-epochs whereas the y-axis in 5a, 5b
and 5c represents the staleness, volume and RMSE values,
respectively.

Fig. 5a shows that, on all dataset matrices, using HP-λ2

produces signicantly less staleness than that using RAND.
Furthermore, the effect of HP-λ2’s objective, which is reduc-
ing the maximum connectivity, can be clearly seen in the
gure as the fast dropping staleness values when η becomes
larger. That is, the staleness gap between HP-λ2 and RAND
increases as η increases.

Fig. 5b shows that the communication volume signi-
cantly decreases with increasing η. Furthermore, HP-λ2’s
objective on reducing the communication volume is clear
from the signicant gap between HP-λ2 and RAND. The re-
duction in staleness and volume as η increases corroborates
our theoretical analysis given in Section 3.5.

The effect of reducing staleness on the RMSE values is
evident in Fig. 5c. Generally, increasing η reduces the RMSE
values for both HP-λ2 and RAND on all dataset matrices
except Goodreads when partitioned using RAND. Fig. 5c
also reconrms that reducing staleness reects on the RMSE
values as the staleness values of HP-λ2 are less than those
of RAND.

Fig. 6 studies how the RMSE drops as SGD algo-
rithms progresses in terms of epochs when factorizing
Amazon-Electronics and Goodreads onK=512 proces-
sors using HP-λ2. The epoch versus test RMSE plots in Fig. 6
of different η values show how the η-PASGD algorithm
reaches certain RMSE values in a less number of epochs
with a higher η.

5.2.2 Strong scaling and runtime analyses

Fig. 7 shows the strong scaling curves of RAND- and HP-λ2-
based η-PASGD. We x η to 32 and measure the per-epoch
runtime on K = {64, 128, 256, 512} processors. In order to
see the effect of reducing volume by HP-λ2, we experiment
with two different F values: F=10 (Fig. 7a) and F=50
(Fig. 7b).

As seen in Fig. 7, the η-PASGD algorithm scales
for all the dataset matrices. When F=10, HP-λ2 scales
better than RAND in case of two out of ve matri-
ces (Amazon-Electornics and Goodreads), whereas it
scales similar to RAND in the rest. At such small F , al-
though HP-λ2 signicantly decreases the volume compared
to RAND, the effect of volume (bandwidth) might not be
the major factor deciding the parallel performance. Other
factors, such as the number of exchanged messages (latency)
might dominate the parallel runtime. We do not aim at
reducing the number of messages in this work and there-
fore both HP-λ2 and RAND might compete in this met-
ric, thus attaining comparable performance in Movielens,
Netflix and Yahoo! Music. In fact, depending on the
sparsity pattern of the matrix, decreasing the total volume

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

10

1 2 4 8 16 32 64 12
8

25
6

1
0
5

1
0
6

η

S
ta
le
n
es
s

Amazon-Electronics

1 2 4 8 16 32 64 12
8

25
6

1
0
6

1
0
7

η

Goodreads

1 2 4 8 16 32 64 12
8

25
6

1
0
6

1
0
6
.

5

η

Movielens

RAND HP-λ2

1 2 4 8 16 32 64 12
8

25
6

1
0
6
.

5

η

Netflix

1 2 4 8 16 32 64 12
8

25
6

1
0
7

1
0
7
.

5

η

Yahoo! Music

(a) Staleness

1 2 4 8 16 32 64 12
8

25
6

0.2

0.4

0.6

0.8

1
×10

7

η

v
o
lu
m
e

Amazon-Electronics

1 2 4 8 16 32 64 12
8

25
6

0.8

1

1.2

1.4

1.6

1.8

×10
7

η

Goodreads

1 2 4 8 16 32 64 12
8

25
6

3

4

5

6

7

×10
6

η

Movielens

1 2 4 8 16 32 64 12
8

25
6

0.6

0.8

1

×10
7

η

Netflix

1 2 4 8 16 32 64 12
8

25
6

0.6

0.8

1

1.2

1.4

×10
8

η

Yahoo! Music

(b) Total Communication Volume

1 2 4 8 16 32 64 12
8

25
6

2.5

3

3.5

η

te
st

R
M
S
E

Amazon-Electronics

1 2 4 8 16 32 64 12
8

25
6

1.5

1.6

1.7

1.8

η

Goodreads

1 2 4 8 16 32 64 12
8

25
6

0.85

0.9

0.95

1

1.05

η

Movielens

1 2 4 8 16 32 64 12
8

25
6

0.85

0.9

0.95

η

Netflix

1 2 4 8 16 32 64 12
8

25
6

22

24

26

η

Yahoo! Music

(c) Test RMSE after 50 epochs (F = 50)

Fig. 5: Comparing RAND and HP-λ2 in terms of staleness, volume and test RMSE on K = 512 processors

is expected to be accompanied with decreased number of
messages, which explains the better performance of HP-λ2

in case of Amazon-Electornics and Goodreads.
When F=50, the performance gap between HP-λ2 and

RAND increases in terms of per-epoch runtime in favor
of HP-λ2. This nicely follows the previous discussion. For
larger F values, the bandwidth component becomes more
dominant and its effect on the runtime becomes clear as K
increases, as in the case of Movielens and Yahoo! Music.

5.2.3 η-PASGD vs PASGD comparisons

Table 2 is presented to compare the η-PASGD algorithm
against the PASGD algorithm (i.e., when η=1) using all
dataset matrices on K = {64, 128, 256, 512} processors.

The table compares the two algorithm in terms of epoch
time, staleness, volume and RMSE. The values in the table
under column Y represent the normalized result of running
η-PASGD using η=32 in terms of metric Y with respect
to that of running PASGD (η=1). Values less than 1 under
column Y means that η-PASGD outperforms PASGD in
terms of metric Y .

In terms of SGD epoch time, the gap between η=32
and η=1 increases as K increases. This is because, as K
increases, the communication component of the runtime
becomes more dominant. Since there is a signicant gap
between η=1 and η=32 in terms of volume (recall Fig. 5b),
the effect of this gap on the runtime becomes clear as K
increases. On average, η=32 outperforms η=1 by 44% on

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

11

0 5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

2.5

3

3.5

4

SGD epoch

te
st

R
M
S
E

Amazon-Electronics

0 5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

1.5

2

2.5

3

3.5

SGD epoch

Goodreads

η = 1
η = 4
η = 8
η = 16
η = 32

Fig. 6: Per-epoch test RMSE plots for
Amazon-Electronics and Goodreads as η changes
on K = 512 processors using HP-λ2 with F = 50.

TABLE 2: Normalized cost metrics of η-PASGD (η is set to
32) with respect to PASGD (η=1) on different number of pro-
cessors using the HP-λ2 method and F=50. A value v < 1
means η-PASGD outperforms PASGD by (1− v)× 100%.

Dataset K
(Normalized values)

epoch time staleness volume rmse

Amazon

Electronics

64 0.99 0.10 0.71 0.67
128 0.78 0.21 0.68 0.66
256 0.57 0.29 0.67 0.65
512 0.60 0.35 0.68 0.65

Goodreads

Reviews

64 0.87 0.09 0.74 0.88
128 0.73 0.20 0.71 0.88
256 0.70 0.29 0.70 0.87
512 0.60 0.35 0.70 0.86

Movielens

Ratings

64 1.26 0.25 0.68 0.87
128 1.10 0.49 0.67 0.87
256 0.80 0.67 0.75 0.87
512 0.75 0.78 0.81 0.85

Netflix

Ratings

64 1.05 0.43 0.69 0.89
128 1.19 0.64 0.75 0.89
256 1.03 0.79 0.83 0.90
512 0.75 0.88 0.89 0.91

Yahoo

Music

Ratings 1

64 0.80 0.29 0.62 0.92
128 0.81 0.48 0.65 0.90
256 0.77 0.61 0.71 0.87
512 0.60 0.70 0.76 0.85

Geometric
average

64 0.98 0.19 0.69 0.84
128 0.90 0.36 0.69 0.84
256 0.76 0.49 0.73 0.83
512 0.66 0.57 0.76 0.82

K=512.

In terms of staleness and volume, the gap between η=32
and η=1 decreases as K increases. This is because, for an
H-matrix row hj , when η is xed and K is close to η, the σj

term in eq. (9) becomes close to the λ(cj) term. On the other
hand, as K becomes larger, the difference between the two
terms increases thus the total staleness. The same argument
applies to volume as well (cf. eq. (8)). On average, the RMSE
values of η=32 decrease by 16% to 18% compared to η=1.

6 RELATED WORK

The closest existing algorithm to our η-PASGD algorithm is
the GASGD algorithm by Petroni and Quarzoni [7]. Similar
to η-PASGD, the GASGD algorithm performs η synchro-
nizations during an ASGD epoch. Furthermore, the au-
thors aim at reducing staleness and communication volume
through graph partitioning. The main differences between
η-PASGD and GASGD are: (i) In η-PASGD, the input matrix
is partitioned rowwise, whereas in GASGD it is partitioned
nonzero-wise. The rowwise partitioning has the advantage
of limiting the communication to be on the H-matrix rows
instead of both factor matrices. Furthermore, partitioning
using an intelligent model, such as our model presented in
Section 4, using rows as tasks is much cheaper than that
using nonzeros as tasks. (ii) The DASGD algorithm does not
enforce conditions (6) and (7) thus it allows η to go beyond
K . We believe that enforcing conditions (6) and (7) allows
reducing larger amount of staleness in less number of sub-
epochs.

Other distributed ASGD-based methods exist in the lit-
erature as well [5], [6], [18]. The work by Ahmed et al. [6]
performs rowwise partitioning utilizing graph partitioning.
However, it does not perform multiple synchronizations as
in our work and in [7]. Furthermore, it follows a central-
ized communication scheme: a set of worker processors
compute local gradient and communicate with a master
processor, which in turn is responsible for handling the
global gradient. Our work, on the other hand, follows a
decentralized communication scheme. Downpour-SGD [18]
also follows the centralized communication scheme. The
downside of this approach is that each worker needs to
communicate with a single master and this might create
a communication bottleneck. The ASGD algorithm in [5]
performs multiple synchronizations per epoch similar to
our algorithm, but it differs from our algorithm in: (i) the
number of synchronizations is not bounded by the number
of partitions/processors, and (ii) there is no intelligent parti-
tioning to reduce the staleness and communication volume.

Existing distributed stratied SGD methods assure that
there is no staleness during the course of parallel SGD and
all follow the SSGD method proposed in [8]. The authors
of the SSGD methods propose a distributed algorithm,
DSGD, in the same work [8] that sets the number of sub-
epochs (strata) to K . Other works [5], [9], [12] follow with
varying the number of sub-epoch, and changing how the
communication is handled. The stratied SGD methods are
designed to not incur any staleness during the SGD epoch,
and therefore considered different from our work.

7 CONCLUSIONS

Reducing staleness in ASGD algorithms is invaluable for
improving the convergence rate and the overall quality of
the low-rank matrix factorization. The proposed parallel
ASGD algorithm, η-PASGD, provides an adequate setup to
reduce the staleness via η synchronizations (up to K for a
K-processor system) while handling the communication as
efciently as possible. As K increases, the η value required
to achieve adequate RMSE values will also increase, which
in turn increases the synchronization overhead. Therefore,
an intelligent partitioning model that targets at decreasing

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

12

2
6

2
7

2
8

2
9

2
6

2
7

Processors

ep
o
ch

ti
m
e
(m

s)
Amazon-Electronics

2
6

2
7

2
8

2
9

2
7

2
8

2
9

Processors

Goodreads

2
6

2
7

2
8

2
9

2
7

2
8

2
9

Processors

Movielens

RAND HP-λ2

2
6

2
7

2
8

2
9

2
9

2
10

2
11

Processors

Netflix

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

Processors

Yahoo! Music

(a) F = 10

2
6

2
7

2
8

2
9

2
6

2
7

2
8

Processors

ep
o
ch

ti
m
e
(m

s)

Amazon-Electronics

2
6

2
7

2
8

2
9

2
7

2
8

2
9

2
10

Processors

Goodreads

2
6

2
7

2
8

2
9

2
7

2
8

2
9

Processors

Movielens

2
6

2
7

2
8

2
9

2
9

2
10

2
11

Processors

Netflix

2
6

2
7

2
8

2
9

2
11

2
12

2
13

Processors

Yahoo! Music

(b) F = 50

Fig. 7: Strong scaling curves (log-log scale)

the staleness to achieve certain RMSE values with lower
η is essential. Our proposed hypergraph-partitioning-based
algorithm (HP-λ2) encapsulates reducing staleness and vol-
ume while minimizing the maximum η value required for
stale-free SGD. Our evaluations with an MPI-based imple-
mentation of the η-PASGD algorithm show the superiority
of the HP-λ2 method compared to random partitioning in
terms of reducing staleness and volume, and they show how
the test RMSE values and the runtimes are improved as a
result.

ACKNOWLEDGMENTS

This work was supported by the Scientic and Technolog-
ical Research Council of Türkiye (TUBITAK) under project
EEEAG-119E035. Computing resources used in this work
were provided by the National Center for High Perfor-
mance Computing of Türkiye (UHeM) under grant number
4009972021.

REFERENCES

[1] X. Yang, Y. Guo, Y. Liu, and H. Steck, “A survey of collaborative
ltering based social recommender systems,” Computer communi-
cations, vol. 41, pp. 1–10, 2014.

[2] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37,
2009.

[3] F. Ricci, L. Rokach, and B. Shapira, “Introduction to recommender
systems handbook,” in Recommender systems handbook. Springer,
2011, pp. 1–35.

[4] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A Lock-
Free Approach to Parallelizing Stochastic Gradient Descent,” in
Advances in Neural Information Processing Systems, J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, Eds., vol. 24.
Curran Associates, Inc., 2011.

[5] C. Teioudi, F. Makari, and R. Gemulla, “Distributed Matrix
Completion,” in 2012 IEEE 12th International Conference on Data
Mining, 2012, pp. 655–664.

[6] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski,
and A. J. Smola, “Distributed Large-Scale Natural Graph Factor-
ization,” in Proceedings of the 22nd International Conference on World
Wide Web, ser. WWW ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 37–48.

[7] F. Petroni and L. Querzoni, “GASGD: Stochastic Gradient Descent
for Distributed Asynchronous Matrix Completion via Graph Par-
titioning.” in Proceedings of the 8th ACM Conference on Recommender
Systems, ser. RecSys ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 241–248.

[8] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-
Scale Matrix Factorization with Distributed Stochastic Gradient
Descent,” in Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’11.
New York, NY, USA: Association for Computing Machinery, 2011,
p. 69–77.

[9] H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vishwanathan, and I. Dhillon,
“NOMAD: Non-Locking, Stochastic Multi-Machine Algorithm
for Asynchronous and Decentralized Matrix Completion,” Proc.
VLDB Endow., vol. 7, no. 11, p. 975–986, jul 2014.

[10] U. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication,”
IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 7,
pp. 673–693, 1999.

[11] O. Fortmeier, H. M. BüCker, B. O. Fagginger Auer, and R. H.
Bisseling, “A New Metric Enabling an Exact Hypergraph Model
for the Communication Volume in Distributed-Memory Parallel
Applications,” Parallel Comput., vol. 39, no. 8, p. 319–335, aug 2013.

[12] N. Abubaker, M. O. Karsavuran, and C. Aykanat, “Scaling Strat-

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

13

ied Stochastic Gradient Descent for Distributed Matrix Comple-
tion,” 2022.

[13] R. He and J. McAuley, “Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative ltering,”
in proceedings of the 25th international conference on world wide web,
2016, pp. 507–517.

[14] M. Wan and J. McAuley, “Item recommendation on monotonic
behavior chains,” in Proceedings of the 12th ACM conference on
recommender systems, 2018, pp. 86–94.

[15] J. Bennett, S. Lanning et al., “The Netix prize,” in Proceedings of
KDD cup and workshop, vol. 2007. New York, NY, USA., 2007,
p. 35.

[16] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The yahoo!
music dataset and kdd-cup’11,” in Proceedings of KDD Cup 2011.
PMLR, 2012, pp. 3–18.

[17] F. M. Harper and J. A. Konstan, “The movielens datasets: History
and context,” Acm transactions on interactive intelligent systems (tiis),
vol. 5, no. 4, pp. 1–19, 2015.

[18] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. a. Ranzato, A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng,
“Large Scale Distributed Deep Networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

Nabil Abubaker received the BS degree from
An-Najah National University, Palestine, where
he was an active IEEE student member and
served as the vice-chair of the university’s stu-
dent branch. He received the MS and PhD de-
grees from Bilkent University, Turkey where he is
currently working as a postdoctoral researcher,
all in Computer Engineering. His research in-
terests include parallel and scientic computing,
with focus on communication-efcient iterative
algorithms.

Orhun Caglayan, received the BS and MS de-
grees in 2018 and 2022, respectively, in com-
puter engineering from Bilkent University, Turkey.
His research interests include parallel and high
performance computing with focus on iterative
algorithms. He is currently a software engineer
in Meta, UK.

M. Ozan Karsavuran received the BS, MS,
and PhD degrees in 2012, 2014, and 2020, re-
spectively, in computer engineering from Bilkent
University, Turkey. He is currently postdocdoral
scholar of the Computing Sciences Area at the
Lawrence Berkeley National Laboratory. His re-
search interests include combinatorial scientic
computing, graph and hypergraph partitioning for
sparse matrix and tensor computations, and par-
allel computing in distributed and shared mem-
ory systems.

Cevdet Aykanat received the BS and MS de-
grees from Middle East Technical University,
Turkey, both in electrical engineering, and the
PhD degree from Ohio State University, Colum-
bus, in electrical and computer engineering. He
worked at the Intel Supercomputer Systems Di-
vision, Beaverton, Oregon, as a research asso-
ciate. Since 1989, he has been afliated with the
Department of Computer Engineering, Bilkent
University, Turkey, where he is currently a profes-
sor. His research interests mainly include paral-

lel computing and its combinatorial aspects. He is the recipient of the
1995 Investigator Award of The Scientic and Technological Research
Council of Turkey and 2007 Parlar Science Award. He has served as
an Associate Editor of IEEE Transactions of Parallel and Distributed
Systems between 2009 and 2013.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3275107

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

