
1

Scaling Stratified Stochastic Gradient Descent for
Distributed Matrix Completion

Nabil Abubaker, M. Ozan Karsavuran, and Cevdet Aykanat

Abstract—Stratified SGD (SSGD) is the primary approach for achieving serializable parallel SGD for matrix completion. State-of-the-art
parallelizations of SSGD fail to scale due to large communication overhead. During an SGD epoch, these methods send data proportional
to one of the dimensions of the rating matrix. We propose a framework for scalable SSGD through significantly reducing the
communication overhead via exchanging point-to-point messages utilizing the sparsity of the rating matrix. We provide formulas to
represent the essential communication for correctly performing parallel SSGD and we propose a dynamic programming algorithm for
efficiently computing them to establish the point-to-point message schedules. This scheme, however, significantly increases the number
of messages sent by a processor per epoch from O(K) to O(K2) for a K-processor system which might limit the scalability. To remedy
this, we propose a Hold-and-Combine strategy to limit the upper-bound on the number of messages sent per processor to O(K lgK). We
also propose a hypergraph partitioning model that correctly encapsulates reducing the communication volume. Experimental results show
that the framework successfully achieves a scalable distributed SSGD through significantly reducing the communication overhead. Our
code is publicly available at: github.com/nfabubaker/CESSGD

Index Terms—Recommender Systems, Collaborative Filtering, Matrix Completion, SGD, HPC, Combinatorial algorithms, Hypergraph
partitioning, Communication cost minimization, Latency cost, Bandwidth cost.

F

1 INTRODUCTION

R ECOMMENDER systems are omnipresent in e-commerce
as well as social, professional and academic networks.

These systems help businesses improve profit by targeted
advertisements to interested parties, facilitate the recruitment
process by matching more relevant candidates to jobs, and
help academics explore cross-disciplinary research works as
well as expand their collaboration networks. Recommender
systems can involve one or more techniques, among which
Collaborative Filtering (CF) is the most widely used.

Collaborative filtering approaches recommend an item
to a target user by using other users’ ratings given that
those other users and the target user have rated some other
items similarly. Matrix factorization have been successfully
used in collaborative filtering via revealing feature vectors
that represent the users and the items (latent factors). A
sparse rating matrix is factorized into two dense matrices
representing the feature vectors of items and users, and these
dense matrices are then used to predict missing entries in
the original rating matrix. This use of matrix factorization is
commonly referred to as matrix completion.

The rating data produced nowadays, whether by social
networks or e-commerce, is rather huge and change very
often. Recommender systems for such huge data are usually
implemented on distributed-memory systems that might in-
volve multiple data centers. Therefore, the matrix completion
component should be performant and scalable to utilize the
provided computational resources as well as the high-speed

• Authors are with the Department of Computer Engineering, Bilkent
University, Ankara, Turkey. E-mails: nabil.abubaker@bilkent.edu.tr,
ozan.karsavuran@bilkent.edu.tr, aykanat@bilkent.edu.tr

• This work is supported by the Scientific and Technological Research Council
of Turkey (TUBITAK) under project EEEAG-119E035.

networks.
The matrix factorization can be computed with differ-

ent methods, including stochastic gradient descent (SGD),
alternating least squares (ALS), cyclic coordinate descent
(CCD) and more. SGD is very efficient and usually achieves
high completion accuracy compared to other methods. How-
ever, given its sequential nature it has been a challenge
to efficiently parallelize while maintaining accuracy and
convergence guarantee. For this reason, serializable parallel
SGD algorithms are most desired. Serializability of parallel
SGD refers to the existence of an equivalent serially-executed
SGD algorithm with the same update order. Serializability
guarantees the convergence and assures that no two proces-
sors update the same feature vector at the same time (race
condition) thus leading to faster convergence [1]. Stratified
SGD (SSGD) [2] is the de-facto algorithm for achieving a
serializable parallel SGD.

The state-of-the-art methods implementing SSGD [2], [3],
[4] achieve the inter-processor communication necessary
for the correctness of the SSGD through sending/receiving
feature vectors with sizes proportional to one of the dimen-
sions of the input rating matrix. These methods do not
utilize the sparsity of the rating matrix thus producing a
huge amount of extra unnecessary communication especially
when the nonzero density of the rating matrix is low. The
extra communication did not pose a concern because these
methods are tested on a relatively small number of processors
(up to 64) in distributed setting. At such scale, the SGD
runtime is expected to be dominated by computation and
investing in improving the communication component does
not drastically affect the overall running time. On larger scale,
however, the communication component becomes dominant,
and therefore reducing the communication overhead be-
comes essential.

2

Inter-processor communication cost ideally consists of
latency term and bandwidth term. The latency term is
proportional to the number of messages sent, whereas the
bandwidth term is proportional to the volume of data
transferred. If the number of messages is high, the latency
cost might dominate the overall communication component
since each message’s startup time might be higher than that
of sending a few kilobytes of data [5].

We propose a communication-efficient framework for
the SSGD algorithm. Our framework consists of efficiently
finding the essential feature vectors to be communicated
between processors and communicating them through point-
to-point (P2P) messages. This contributes to reducing the
bandwidth overhead through avoiding the extra unnec-
essary communication. This approach has the down side
of increasing the number of messages sent per processor,
thus increasing the latency overhead and possibly affecting
the scalability. To reduce this increase, we propose a novel
approach called hold and combine that reduces the upper
bound on the number of messages fromO(K2) toO(K lgK).
We also propose to further reduce the bandwidth overhead
by using an intelligent partitioning method. This method
utilizes a hypergraph model that correctly encapsulates the
total volume of communication between processors.

The rest of the paper is organized as follows: Section 2
gives the essentials of using and parallelizing SGD for matrix
completion. In Section 3, the communication requirement in
parallel SSGD is studied in detail. In Section 4, the proposed
framework for scaling P2P SSGD, including the hold-and-
combine scheme, is presented. In Section 5, the proposed
hypergraph partitioning (HP) method is presented. Section 6
contains the experiments conducted on an HPC system along
with the results and discussions. Related works are discussed
in Section 7 and the paper is concluded in Section 8.

2 BACKGROUND

2.1 Matrix Completion with SGD

We define the matrix completion problem in the context of
collaborative filtering as follows: Given a set U of N users, a
set I of M items, and a set of ratings Ω as the known entries
of a sparse rating matrix R ∈ RN×M . The problem is to
find two dense factor matrices W ∈ RN×F and H ∈ RM×F
such that a low-rank approximation R ≈WH> is achieved.
Here, F �M,N is called the dimension or the rank of the
factorization. The approximation r̂ij of rating rij can then be
calculated as

r̂ij = wih
>
j , (1)

where wi and hj respectively denote the ith row of W
and the jth row of H. The quality of the approximation is
usually measured by an application-dependent loss function
L, thus the problem becomes argminW,H L(R,W,H). For
collaborative filtering, L is usually the eculedian distance
and thus the problem becomes

argmin
W,H

∑
(i,j) s.t. rij∈Ω

(
(rij − r̂ij)2 + γ(‖wi‖2 + ‖hj‖2

)
, (2)

where γ is a regularization parameter to avoid over-fitting,
and r̂ij is computed with (1).

Fig. 1. Stale updates in simple row- or column-wise partitions (upper
part) versus stale-free DSGD (bottom). In the row-wise partition of R,
the rows of W are partitioned conformably and thus each W-matrix row
is accessed by one processor. However, this is not the case for H-matrix
rows. For instance, ratings ril and rjl are respectively distributed to
p1 and p2 and both used to update hl possibly at the same time thus
either p1 or p2 will update on a stale hl. A similar discussion holds for
column-wise partition in a dual manner regarding rjl, rjn and wj .

Since the minimization problem in (2) has two unknowns
W and H, L is a non-convex function [6]. SGD has been
widely used to optimize (minimize) such functions due to
its ability to escape local minimas. At an SGD epoch, each
rating rij ∈ Ω is used to update the objective function’s
parameters. The gradient of the objective function at point
rij is calculated (∇rijLrij (R,W,H)) and the corresponding
wi and hj rows are updated as

wi = wi − ε[(rij − r̂ij)hj + γwi], (3)
hj = hj − ε[(rij − r̂ij)wi + γhj] (4)

where ε is the step size.

2.2 Parallel SGD
SGD is sequential in nature, thus parallelizing it requires
communicating up-to-date W- and H-matrix rows. There
are two main approaches to parallel SGD: asynchronous and
stratified. Asynchronous methods allow the updates given
in (3) and (4) to use and to be performed on stale versions
of wi and/or hj . Asynchronous methods are usually non-
serializable. Simple parallelizations of the SGD-based matrix
completion, such as row-wise or column-wise partitioning
of the rating matrix, are examples of asynchronous SGD (see
Fig. 1).

In order to mitigate the staleness problem, Gemulla et
al. [2] proposed the stratified SGD (SSGD). In SSGD, the
rating matrix is divided into K2 2D blocks using K-way

3

mutually exclusive and exhaustive partitions on the rows
ΠR = {R1, . . . , RK} and columns ΠC = {C1, . . . , CK} of
R. The rows of dense matrices W and H are partitioned
conformably with ΠR and ΠC , respectively. We denote the
row blocks of W and H that respectively conform with Rα
and Cβ as Wα and Hβ . We denote a block of R with rows
in Rα and columns in Cβ as Rαβ .

A set of K 2D non-overlapping sub-matrix blocks
are called a stratum (denoted by S hereafter). Two 2D
sub-matrix blocks are said to be non-overlapping if
they do not share any row or column. A set of K
stratums S = {S1, . . . ,SK} that exhausts all of the
K2 sub-matrix blocks is called correct strata. Fig. 2
shows the strata S = 〈S1 = {R1,1,R2,2, . . . ,R8,8},S2 =
{R1,2,R2,3, . . . ,R8,1}, . . . ,S8 = {R1,8,R2,1, . . . ,R8,7}〉.
The distinguishing property of SSGD is that no ratings
in different blocks of a stratum can update the same row
of the factor matrices W and H. Therefore, if the ratings
constituting a stratum Si are used to update the relevant
H-matrix rows in a mini SGD epoch (called sub-epoch) then
each of the K 2D sub-matrix blocks can be handled by a
separate processor; thus eliminating the staleness problem.

There are several ways to generate a correct strata
that covers the whole dataset and schedule the strata to
sub-epochs. For simplicity, we consider a simple form of
scheduling as follows: at sub-epoch 1, processor px, for
x = 1, 2, . . . ,K, processes the ratings in Rxx to update the
rows in Wx and Hx; at sub-epoch k, processor px processes
the ratings in Rxβ to update the rows in Wx and Hβ , where
β = (1 + (x+k−2) mod K). We refer to this scheduling as
“ring scheduling” or “ring strata” hereafter. A general form of
the ring scheduling consists of a seed, where 1 ≤seed≤ K.
At sub-epoch k, the processor pseed processes the ratings in
Rseed,k to update the rows in Wseed and Hk. At sub-epoch
k, processor px processes the ratings in Rxβ to update the
rows in Wx and Hβ , where

β =1 +(k+(seed+ x− 1 mod K)−2 mod K). (5)

In [2], the parallel algorithm that utilizes SSGD is con-
verted to a Distributed Stochastic Gradient Descent (DSGD)
algorithm for large-scale matrix completion. In DSGD, each
stratum is executed in parallel in one sub-epoch, where the
W- and H-matrix rows are updated with the ratings in
the stratum according to (3) and (4). Then, inter-processor
communications are performed to synchronize all updated
rows of factor matrices. If a row-parallel execution is chosen,
that is the R matrix is partitioned row-wise such that
each row block is executed by a single processor, then
communication is restricted to the H-matrix rows. Row-
parallel execution is usually preferred because the number
of items is generally much less than the number of users
which means the amount of data to be communicated (H) is
small compared to W. In row-parallel execution, we abuse
the stratum notation S to also be viewed as a mapping
function S : [K]→ [K] (where [K] is used to denote the set
{1, . . . ,K} hereafter) from a processor pk to the index β of a
column block Cβ . For instance, S2(p4)=5 means that during
sub-epoch 2, processor p4 will exclusively update the rows
of the H5 sub-matrix. We also use S−1

β (px) to retrieve the
sub-epoch at which px updates Hβ .

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

Fig. 2. The numbers identify the sub-matrix blocks that constitute a
stratum in a ring strata with seed= 1. Stratum S2 is highlighted. Side
arrows show the processor update order of hi and hj .

3 COMMUNICATION IN DISTRIBUTED SSGD
Given strata S where each stratum is to be processed in a
sub-epoch in row-parallel execution. For an H-matrix row
block Hβ , we define the sequence

Υβ = 〈pi1 , pi2 , . . . , piK 〉

of processors that compute the gradient using ratings in the
column block Cβ according to S. That is, pi1 updates the
rows of Hβ in the first sub-epoch, pi2 in the second sub-
epoch and so forth. Furthermore, we define a distance metric
dxyβ between two processors px and py updating Hβ as

dxyβ = S−1
β (px)− S−1

β (py). (6)

This distance quantifies the number of sub-epochs elapsed
after px updates rows in Hβ and before py does so.

3.1 Communication in DSGD
In the original DSGD algorithm [2], after processor px
updates row block Hβ in sub-epoch k, it sends the rows
in Hβ to the the processor that will update Hβ in sub-epoch
k + 1. Therefore, at each sub-epoch, each processor sends a
whole row block of H to exactly one processor. For instance,
assuming the DSGD is executed according to the ring strata
given in Fig. 2, after sub-epoch 1 is completed p1 sends H1

to p8, p8 sends H8 to p7 and so forth.
In Fig. 2, the update sequence for row block H1 is

Υ1 = 〈p1, p8, p7, p6, p5, p4, p3, p2〉. The communication of
hi ∈ H1 through the subsequence/subchain p1 → p8 →
p7 → p6 does not incur any extra volume since each of
these processors update hi. However, p5 does not update
hi hence p5 needs to receive the up-to-date hi from p6 and
forward it to p4 in the next sub-epoch. In this case, hi incurs
F words of forwarding overhead. In the case of hj ∈ H1,
the first processor to update it after p1 is p4. Therefore, four
forwarding communications, each of size F , are incurred due
to hj in p1 → p8 → p7 → p6 → p5. In the worst case, an H-
matrix row can be forwarded K−1 times incurring F (K−1)

4

extra words of communication volume. This indicates that
the volume due to forwarding has a loose upper bound
of O(MF (K − 1)) words. Let λ(hj) denote the number
of processors that update hj ∈ Hβ , then the amount of
forwarding overhead of hj is K − λ(hj).

The communication scheme of the DSGD method has
the nice property of very low latency overhead since it
restricts the number of messages sent by any processor at
any sub-epoch to one. However, this scheme suffers from
increasing the bandwidth overhead (communication volume)
due to forwarding the H-matrix rows. For each epoch, the
communication volume sent by each processor is equal to
F ×M ×K as each processor sends approximately M/K
dense H-matrix rows each of size F during each of theK sub-
epochs. Especially for highly sparse rating matrices, it is clear
that the volume of communication performed is much more
than the required, and the increased bandwidth overhead
due to forwarding can be prohibitive as K increases.

3.2 Required Communication
The communication of H-matrix rows required for correctly
executing SSGD in a distributed fashion is described accord-
ing to the following definition:

Definition 1 (d-gap rows). Consider two nonadjacent pro-
cessors in Υβ : pix and piy such that x < y. During DSGD, a
row hj ∈ Hβ is called a zero-gap row in terms of pix and piy
if it is updated by both pix and pix+1. hj is called one-gap
row if it is updated by both pix and pix+2 but not pix+1.
hj is called d-gap row if it is updated by both pix and piy
but not any of the d=dxyβ processors in-between (that is, in
〈pix+1

, . . . , piy−1
〉). The set of all such d-gap rows between

pix and piy in Hβ is given by

H
ixiy
β = {hj | (∃rij)[rij ∈ Rxβ ∩Ryβ

∧ rij /∈ R(x+1)β ∪ · · · ∪R(y−1)β]}. (7)

Communicating H
ixiy
β from pix to piy after pix processes the

ratings in 2D block Rixβ and before piy starts processing the
ratings in Riyβ guarantees a correct distributed row-parallel
SSGD execution.

The DSGD scheme discussed in Sec. 3.1 guarantees the
correctness of the SSGD since up-to-date hj ∈ H

ixiy
β will

eventually reach piy from pix , assuming x < y in Υβ , via
forwarding through 〈pix+1 , . . . , piy−1〉.

4 A FRAMEWORK FOR SCALING SSGD
4.1 Communicating d-gap rows through P2P messages
We propose to avoid the forwarding overhead by sending
an updated H-matrix row to the processor that updates it
next directly through P2P communications. At the beginning
of sub-epoch k, processor px sends P2P messages to a set of
processors SendSetk(px) and receives from RecvSetk(px).
These two sets can be respectively constructed as

SendSetk(px) = {py | Hxy
Sk−1(px) 6= ∅}, (8)

RecvSetk(px) = {py | Hyx
Sk(px) 6= ∅}. (9)

For example, in Fig. 2, at the beginning of the second sub-
epoch p1 sends hi to p8 and hj to p4.

Algorithm 1 Point-to-Point parallel SSGD on processor px
Require: Rating matrix R, Processor count K

1: Initialize local factor matrices W and H randomly
2: repeat
3: Receive strata S from p1 through Bcast.
4: Construct P2P communication according to S
5: for k = 1 to K do . For each sub-epoch
6: βprev ← Sk−1(px)
7: βcurr ← Sk(px);
8: for each py ∈ SendSetk(px) do
9: Send Hxy

βprev
to py

10: end for
11: for each pz ∈ RecvSetk(px) do
12: Receive Hzx

βcurr
from pz

13: end for
14: for each rij ∈ Rxβcurr do
15: wi = wi − ε[(rij − r̂ij)hj + γwi]
16: hj = hj − ε[(rij − r̂ij)wi + γhj]
17: end for
18: end for
19: until convergence or max. number of epochs reached

Algorithm 1 presents the P2P-based parallel SSGD al-
gorithm for processor px. At line 3, processor p1 picks
strata S and broadcasts to all other processors. At line 4,
px determines the communication requirement according
to (7) and constructs the send/receive information of the P2P
messages according to (8) and (9). Then, the up-to-date rows
required in the current sub-epoch are communicated at lines
8-13 through P2P messages. The SGD updates are performed
at lines 14 and 15 respectively according to (3) and (4).

Algorithm 2 Find d-gap H-matrix rows on processor px
Require: Rating matrix R, Processor count K , Strata S

1: for each Hβ ∈ H do
2: Compute Υpx

β

3: mask ← B
Υpxβ [2]

β
4: for k = 2 to K do
5: py ← Υpx

β [k]

6: Ψ
px,py
β ← Bxβ ∧B

y
β ⊕ (Bxβ ∧B

y
β ∧mask)

7: Hxy
β ← {hi ∈ Hβ | Ψ

px,py
β [i] = 1}

8: mask ← mask ∨Byβ
9: end for

10: end for

4.2 Efficiently constructing d-gap row sets

Computing d-gap H-matrix rows using (7) has recurring
computations for different instances. For example, com-
puting H

ixiy
β and H

ixiy+1
β would require computing the

same R(x+1)β ∪ · · · ∪ R(y−1)β term twice. For an efficient
computation, we devise an algorithm that utilizes a dynamic
programming formulation leveraging efficient bulk bit-wise
operations.

Consider a binary string Bixβ ∈ {0, 1}nβ of length
nβ = |Hβ |, such that the bth entry of Bixβ is set to ‘1’ if
pix updates the bth row in Hβ , and set to ‘0’ otherwise. Then,

5

Fig. 3. An example TSMS for p3. The rows are the processors that
p3 communicates with sorted according to their distance from p3. The
columns represent both the sub-epochs and the H-matrix blocks to be
updated at each sub-epoch. An entry (py , Hβ) gives the sub-epoch at
which py updates Hβ after p3 does (note that this sub-epoch might be in
the next epoch). The circles show the messages that can be combined.

the indices of the rows to be communicated between pix and
piy are the indices of the 1-bits in

Ψ
ix,iy
β = Bixβ ∧B

iy
β ⊕(Bixβ ∧B

iy
β ∧(B

ix+1

β ∨· · ·∨Biy−1

β)), (10)

where ⊕, ∧ and ∨ respectively denote logical exclusive OR
(XOR), logical AND and logical OR operations. The term
(B

ix+1

β ∨ · · · ∨Biy−1

β) in (10) can be computed incrementally
thanks to the associativity property of the ∨ operation.

Given Hβ and Υβ , we define Υpx
β as the sequence

of processors updating Hβ starting from px. Υpx
β can be

obtained from Υβ by left-rotating the sequence until px is at
the first index. Algorithm 2 presents the efficient dynamic-
programming-based computation of the d-gap H-matrix
rows between px and the other K−1 processors. For each
Hβ , the order of processors updating Hβ starting from px
according to strata S is maintained in Υpx

β (line 3). Then,
px constructs the d-gap rows one by one according to this
order leveraging the bottom-up construction of the term
(B

ix+1

β ∨ · · · ∨Biy−1

β), lines 4-9.

4.3 Hold & Combine strategy for reducing latency
Using P2P messages to communicate the updated rows with-
out forwarding is indispensable for reducing the bandwidth
overhead of the communication. However, it has a high
potential of increasing the latency overhead via increasing
the number of messages performed per epoch compared
to DSGD. In DSGD, a processor sends K messages per
epoch (one message to one processor at each sub-epoch),
whereas using the P2P requires sending at most K × (K−1)
messages per epoch (up to K−1 messages from each of the
K processors at each sub-epoch). We propose the hold and
combine (H&C) strategy to reduce the upper-bound on the
number of messages sent per epoch to O(K lgK).

Definition 2. Fixed-distance strata is any strata that satisfies

dxyα = dxyβ for any pair of H-matrix row α and β. (11)

That is, the fixed-distance strata have the property of constant
distance between any two processors regardless of the H-
matrix row block they are updating. We refer to the distance
between two processors px and py in a fixed-distance strata
as dxy . Any ring strata scheduled with (5) is a fixed-distance
strata.

During an SGD epoch, the communication of Hxy
β

should be performed after px updates Hβ in sub-epoch
k and before py starts updating Hβ . This means that Hxy

β
can be sent at the beginning of any sub-epoch between
k + 1 and k + dxyβ . Now consider the communication of
Hxy
β at sub-epoch k in a fixed-distance strata. Observe

that when sub-epoch k + dxy is reached, all the rows
in Hxy

Sk+1(px),H
xy
Sk+2(px), . . . ,H

xy
Sk+dxy−1(px) are already up-

dated by px and ready to be sent to py . So, these rows can
be held by px and sent all at once in one message to py in
sub-epoch k + dxy along with Hxy

β .
Utilizing fixed-distance strata, we propose to hold P2P

messages and combine them as follows: If dxy ≥ K/2, then
the messages between px and py in an epoch can be combined
into two or more P2P messages. This is because if dxy = K−1
then one message is needed for K−1 H-matrix row blocks
and another message needed for the last block. Otherwise
if dxy < K/2, then the messages between px and py can be
combined in dK/dxye P2P messages. Therefore, the number
of messages sent per processor per epoch can be computed
by

K
2∑
i=1

2 +

K−1
2∑
i=1

K

i
.

The second summation is a harmonic series which can be
approximated by ln(K − 1)/2 + 1, thus

K
2∑
i=1

2 +

K−1
2∑
i=1

K

i
≈ K + K ln(K − 1)/2 ≤ K lgK (12)

is the upper bound on the number of messages sent per
processor per epoch.

To facilitate the presentation of the H&C strategy, we
assume that each processor constructs a tabular-shaped
message schedule (TSMS). In the TSMS of px, rows are
the K− 1 processors that px communicates with during
an epoch, and columns represent sub-epochs as well as the
corresponding H-matrix row blocks updated by px. Each
table entry TSMS(py , Hβ) represents the sub-epoch S−1

β (py).
Fig. 3 shows a TSMS for p3 using strata with seed = 5.

In the figure, the circled TSMS entries denote the messages
(H-matrix row blocks) that can be combined. For instance,
the communication requirement between p3 and p7 during
an SGD epoch can be done with two messages. The first
message, required at the beginning of sub-epoch 5, consists
of H3,7

7 ∪H
3,7
8 ∪H

3,7
1 ∪H

3,7
2 . The second message, required at

the beginning of sub-epoch 1 of the next SGD epoch, consists
of H3,7

3 ∪H3,7
4 ∪H3,7

5 ∪H3,7
6 . Observe that the sub-epoch

at which the combined message should be sent is decided
by the first H-matrix block of the combined message. For
instance, the first message to p7 must arrive before p7 starts
updating rows in H7 which is sub-epoch 5.

Algorithm 3 shows the procedure to construct com-
bined messages from P2P messages at px. Given the

6

Algorithm 3 Message combining strategy on processor px
Require: SendSetk(px), Hxy ∀k, y ∈ [K] ∧ y 6= x, S

1: for k = 1 to K do
2: for each py ∈ SendSetk(px) do
3: mid ← d k

dxy e . get the message ID
//get the H-matrix block that px updates at SE k

4: β ← Sk(px)
//add the d-gap rows Hxy

β to Msg mid

5: Mxy
mid ←Mxy

mid ∪Hxy
β

// When does px update the first block of mid ?

6: t← (mid − 1) ∗ dxy + 1
// get the H-matrix block that px updates at SE t

7: η ← St(px)
// get the sub-epoch s at which py updates Hη

8: s← S−1
η (py)

9: cSendSets(px)← cSendSets(px) ∪ py
10: end for
11: end for

SendSetk(px) ∀k ∈ {1, . . . ,K} and the d-gap rows between
px and {py | y 6= x}, the combined messages are constructed
as follows: There are dK/dxye possible messages to py each
of which is identified by mid. For each py ∈ SendSetk(px)
the rows in Hxy

β are assigned to a combined message Mxy
mid

(lines 3 and 4). Then, py is added to the new send set of the
sub-epoch at which message mid is sent (lines 5-8).

Algorithm 1 can be modified to accommodate the H&C
strategy as follows: After constructing the P2P communica-
tion (line 4), Algorithm 3 is used to combine the messages.
Then, lines 8-13 can be replaced with the sending/receiving
of combined messages; for each py in cSendSetk(px) a
combined message is identified using mid = dk/dxye and
sent to py , and similarly so for receiving from each pz in
cRecvSetk(px).

It is important to make sure that the K lgK messages
sent per epoch are uniformly distributed over K sub-epochs.
Otherwise, some sub-epochs will constitute a performance
bottleneck due to high number of messages. We show that
utilizing Algorithm 3 for combining the messages has the
nice property of limiting the expected number of messages
sent by each processor at each sub-epoch to O(lgK).

Theorem 1. Using the H&C strategy, the expected number of
messages sent by each processor at each sub-epoch is O(lgK).

Proof. Consider a set zxy that consists of all sub-epochs
wherein a message is sent from px to py . For each sub-epoch
k, the function

σ(k, px, py) =

{
1 k ∈ zxy

0 otherwise

defines if there is a message to be sent from px to py in k.
We can prove that O(lgK) messages are sent at each sub-

epoch as follows. The number of messages per sub-epoch
is equal to the number of occurrences of that sub-epoch in⋃
y∈[K]∧y 6=xz

xy. For each processor py with distance dxy ,
the probability that k is one of the sub-epochs in which a
message is sent to py is equal to 1/dxy . In other words, given
K sub-epochs, the probability that sub-epoch k will be used
to send one of the dK/dxye messages is 1/dxy . Then, the

expected number of messages from px to py at sub-epoch k
is

E[σ(k, px, py)] = Pr(σ(k, px, py) = 1)× 1+

Pr(σ(k, px, py) = 0)× 0 =
1

dxy
.

Using linearity of expectation, the expected total number of
messages sent by px at sub-epoch k is

E[
∑
py 6=px

σ(k, px, py)] =
K∑
i=1

1

i
≈ lnK + 1 ≤ lgK + 1. (13)

5 HP MODEL FOR REDUCING BANDWIDTH COST

There exists two hypergraph models for 1D partitioning
of sparse matrices for SpMV-like kernels; namely the
column-net model for rowwise partitioning and the row-
net model for columnwise partitioning [7]. In these models,
the “connectivity−1” metric [7] is utilized for partitioning ob-
jective of reducing the communication volume in SpMV-like
kernels, whereas the partitioning constraint is maintaining
computational balance among processors. As mentioned ear-
lier, rating matrices usually have larger number of rows than
columns, hence we mainly focus on rowwise partitioning
of rating matrix R. The hypergraph model discussed here
is topologically similar to the column-net model, however
the cutsize metric utilized in the partitioning objective is
different.

In the hypergraph model HR = (V,N), there exists a
vertex vi ∈ V for each row ri of R and a net (hyperedge)
nj ∈ N for each column cj of R. Each net nj connects the
vertices corresponding to the R-matrix rows that contain
nonzeros in column cj . That is, Pins(nj) = {vi ∈ V | rij 6=
0}. Each vertex vi is associated with a weight equals to the
number of nonzeros in row ri. Each net is associated with a
cost F .

A K-way partition Π(HR) = {V1,V2, . . . ,VK} is de-
coded as a K-way rowwise partition of R, where the rows
corresponding to the vertices in part Vα constitute the row
block Rα, for α=1, 2, . . . ,K . Without loss of generality, row
block Rα is assigned to processor pα for α = 1, 2, . . . ,K.
The W-matrix rows are partitioned conformably with the
R-matrix row partition. That is, W-matrix rows in Wα

correspond to the R-matrix rows in Rα.
In partition Π(HR), the weight of each part is equal to

the sum of the weights of the vertices in that part. Hence,
the partitioning constraint of maintaining balance on the
part weights encodes maintaining balance on the nonzero
counts of the R-matrix row blocks. This in turn corresponds
to maintaining balance on the computational loads of the
processors.

In partition Π(HR), a net nj is said to connect a part Vα if
it connects at least one vertex in part Vα, that is, Pins(nj) ∩
Vα 6= ∅. The connectivity set Λ(nj) of a net nj is defined
as the set of the parts that net nj connects, whereas the
connectivity λ(nj) denotes the number of parts connected
by net nj , that is λ(nj) = |Λ(nj)|. A net nj is said to be cut
if λ(nj) > 1 and uncut otherwise. The partitioning objective
is to minimize the cutsize which is defined over the cut nets.

7

In this model, Λ(nj) also represents the set of R-matrix
row blocks that has at least one nonzero in column cj of
R. Hence, the connectivity set of net nj denotes the set of
processors that update the H-matrix row hj . Consider the
H-matrix row hj corresponding to a cut net nj in the P2P
communication scheme. Also consider hj update sequence
defined using the connectivity set and strata. For each epoch,
each processor except the last processor in the sequence
should send its updated hj value once to the next processor
in the sequence. The last processor sends its updated hj
value to the first processor for the next iteration. Hence, each
cut net nj incurs a communication volume of Fλ(nj). On the
other hand, uncut nets incurs no communication. Therefore,
cutsize which encapsulates the total communication volume
during an SGD epoch can be computed as∑

nj3λ(nj)>1

Fλ(nj). (14)

Among the various cutsize metrics in the literature, cut-
size (14) is called as the sum of external degrees (SOED) [8].

There exists several successful hypergraph partitioning
tools that utilize multilevel recursive bipartitioning (RB)
algorithms. Among these partitioning tools, to our knowl-
edge, only hMETIS [8] supports the SOED metric via direct
multi-way partitioning [9]. In fact Karypis and Kumar [9]
clearly indicates that RB framework does not allow directly
optimizing the SOED metric. Here, we propose an RB
framework that encodes the minimization of the SOED metric
correctly.

In the RB framework, a given hypergraphH is recursively
bipartitioned until K parts are obtained, assuming K is a
power of two without loss of generality. At each RB step,
a bipartition Π2 = {VL,VR} on the current hypergraph
forms two vertex-induced subhypergraphs HL = (VL,NL)
and HR = (VR,NR). Here, VL and VR are respectively
used to refer to the left and right parts of the bipartition.
The net sets NL and NR are constructed through cut net
splitting method [7] as follows: Internal nets of VL and VR
are respectively included in NL and NR. A cut net nj in
Π2 is split into two subnets n′j and n′′j , where Pins(n′j) =
Pins(nj) ∩ VL and Pins(n′′j) = Pins(nj) ∩ VR.

In order to encode the SOED metric (14), we propose the
following strategy during the RB framework. We assign a
cost of 2F to each net of the initial hypergraph. Then, after
each RB step, internal nets inherit their cost, whereas splitted
nets are assigned a cost of F . That is, a net holds its cost
of 2F until it becomes cut for the first time, then a cost of
F is assigned to each of split subnets and they inherit their
cost of F through the further RB steps until the end of the
partitioning. Hence, when a net becomes cut for the first time
it incurs 2F to the cutsize, then whenever its subnets become
cut they incur F to the cutsize. In this way, the sum of all
cut net costs encountered during the overall RB algorithm
becomes equal to the SOED metric (14).

6 EXPERIMENTAL EVALUATIONS

6.1 Experimental Framework
We evaluate the contributions proposed in this work through
comparing three methods implementing parallel SSGD using
six real-world rating matrices. The first method, DSGD, is the

algorithm proposed in the original work of Gemulla et al. [2].
DSGD performs block-wise communication of H-matrix row
blocks in each sub-epoch. The second method, P2P, uses P2P
messages as in Algorithm 1. The third, H&C, uses combined
P2P messages (Algorithm 3) for communication.

In all three methods, column-to-stratum assignments
are done randomly in such a way that the number of
columns per stratum differs by at most one. Row-to-processor
assignments are obtained either randomly in a way similar
to that of column-to-stratum assignments, or using the HP
method discussed in Section 5. Whenever the former is used,
the method will be prefixed by RAND, whereas if the latter
is used the method will be prefixed by HP. The HP method
is implemented according to the RB framework described in
Section 5 to encapsulate the SOED metric. In order to obtain
two-way partitions on the (sub)hypergraphs at each RB level,
we use the HP tool PaToH [7] with default parameters in
SPEED mode.

We implemented the parallel SSGD code that includes
DSGD, P2P and H&C in C and used MPI for inter-process
communications. We perform our experiments on an HPC
system with AMD EPYC 7742 processors and a high-speed
HDR InfiniBand network with 200Gb/s bandwidth.

We compare the three methods in terms of commu-
nication cost metrics as well as SGD iteration time. The
communication cost metrics consist of bandwidth-oriented
metrics: sum-max vol and tot vol, and latency-oriented metrics:
sum-max msgs and tot msgs. sum-max msgs is calculated as
follows: at each sub-epoch, the number of messages sent by
the bottleneck processor (the processor that sends highest
number of messages) is obtained. Then, the summation is
taken over all K sub-epochs. That is,

sum-max msgs =
K∑
k=1

max
x∈[K]

(|SendSetk(px)|).

In a similar way, sum-max vol is computed as

sum-max vol =
K∑
k=1

max
x∈[K]

(SendV olk(px)).

tot msgs and tot vol are respectively computed as

tot msgs =
K∑
k=1

∑
x∈[K]

(|SendSetk(px)|),

tot vol =
K∑
k=1

∑
x∈[K]

(SendV olk(px)).

Here, SendV olk(px) = |HSk−1(px)| if DSGD is used, and
SendV olk(px) =

∑
py
|Hxy
Sk−1(px)| if P2P or H&C are used.

Whenever the values for the volume of communication are
presented, these values are normalized with respect to F .
This uncoupling of F from the volume values helps evaluate
the proposed methods and model with any F value.

Table 1 shows the real-world matrices used to evaluate
the proposed methods and their properties. Amz Items
contains product reviews from Amazon between May
1996 - July 2014 [10] with aggressive duplicate removal.
The other two amazon datasets, Books and Clothing, are

8

TABLE 1
Properties of matrices in the dataset

Matrix #rows #cols #nnz density

Amz Items 21.177M 9.874M 82.677M 3.95E-07
Amz Books 8.026M 2.330M 22.50M 1.20E-06
Amz Clothing & Jewelry 3.117M 1.136M 5.75M 1.62E-06
Goodreads Reviews 0.465M 2.080M 15.740M 1.63E-05
Google Reviews 5.055M 3.117M 11.454M 7.27E-07
Twitch 15.524M 6.162M 474.677M 4.96E-06

category-based subsets of the original comprehensive re-
views. Goodread Reviews contains user ratings of books
from the Goodreads website [11]. Google Reviews con-
tains user ratings/reviews of local businesses from the
Google Maps website [12], [13]. Twitch contains ratings
relative to how much time a user spent on a stream in
the Twitch streaming website [14]. The original data does
not contain any explicit ratings. We modified the dataset
to represent (user, stream, rating) such that the rating value
is proportional to the amount of time the user spent in the
specific stream.

6.2 Evaluations with Communication Cost Metrics
Figs. 4a, 4b and 4c compare DSGD, P2P and H&C in
terms of communication cost metrics tot vol, sum-max vol
and tot msgs on K = 1024 processors. In the figures, the
red bars denote RAND-based methods whereas light blue
bars denote HP-based methods. HP does not affect DSGD’s
communication which is why HP is not applicable for DSGD
and hence DSGD has only red bars. Comparison in terms of
sum-max msgs will be discussed in Fig. 5.

6.2.1 Bandwidth-oriented Communication Cost Metrics
As seen in Fig. 4a, both P2P and H&C incur the essential
amount of communication volume as defined in (10), without
any forwarding overhead. Compared to DSGD, both RAND-
and HP-based P2P and H&C methods incur significantly
reduced amount of communication volume per epoch (more
than 10x). Compared to RAND, the HP-based P2P and H&C
methods incur significantly reduced volume (between 1.4x
and 5x).

Fig. 4b shows that in all matrix instances P2P and
H&C have a significantly reduced sum-max vol compared to
DSGD (more than 10x). H&C has slightly higher sum-max vol
compared to P2P. This is because combining the messages dis-
turbs the random volume balancing of P2P. As expected, HP-
based P2P incurs less sum-max vol compared to RAND-based
P2P. HP-based H&C shows a decrease in sum-max vol on two
matrices (Amz Books and Amz Clothing & Jewelry),
and an increase in other four matrices. This is because the HP
method, when used for H&C, does not encapsulate reducing
the sum-max vol metric.

6.2.2 Latency-oriented Communication Cost Metrics
Fig. 4c shows that the H&C method significantly reduces
tot msgs on all dataset matrices. DSGD always incur a
constant number of messages for each K value, thus tot msgs
is always equal to K2 = (1024)2 = 1048576. tot msgs of P2P
can go up to K2 × (K−1). On the other hand, H&C keeps

tot msgs limited to O(K2 lgK). Depending on the sparsity
pattern of the matrix, tot msgs of P2P can be very high (e.g.,
Amz Books, Amz Items and Twitch) or relatively close
to the lower bound (e.g., Amz Clothing & Jewelry). The
H&C method successfully controls the fluctuation in the
number of P2P messages thanks to the lgK factor. The
significant reduction in tot vol of HP-based P2P and H&C
methods compared to those of RAND-based is expected to
reflect on the total number of messages, which is the case as
shown in the figure.

Fig. 5 showcases the H&C method’s regularization of
messages sent per epoch over K sub-epochs. In order to
experimentally verify theO(lgK) bound given in Theorem 1,
we introduce the max-max msgs metric as the maximum
number of messages sent per sub-epoch among all sub-
epochs. That is,

max-max msgs = max{max
x∈[K]

(|SendSetk(px)|) | k ∈ [K]}.

As seen in Fig. 5a, using H&C, max-max msgs is empirically
found to be ≈ 3× lgK, which is very close to the expected
lgK bound on the number of messages per sub-epoch given
in (13). The figure shows that P2P incurs high max-max msgs
on K = 256, and then the number starts to decrease as
K increases. We believe this is attributed to the ability
of random partitioning to balance P2P message counts
and volume. In Fig. 5b, the sum-max msgs metric is shown
for all matrices in the dataset using P2P and H&C on
K = 64, . . . , 1024 processors. The figure shows the success
of H&C in keeping the number of messages under the K lgK
theoretical bound. Since the P2P sum-max messages do not
decrease as K increases, this means maximum number of
messages per sub-epoch are almost equal among all sub-
epochs, especially when K ≥ 512. On the other hand,
although the H&C’s max-max msgs come very close to those
of P2P on some instances such as Goodreads Reviews
and Google Reviews, sum-max msgs stay significantly less
than those of P2P. This means that although the maximum
number of messages sent per sub-epoch can reach 3 lgK
in very few sub-epochs, it is still equal to or less than the
expected lgK messages.

6.3 Evaluations with SGD Iteration Time

Figs. 4d and 4e compare the methods in terms of SGD
iteration time on K = 1024 processors respectively using
F = 16 and F = 64 values. The figure shows that the P2P
improvement over DSGD is significant (more than 4x on all
matrices, except for Twitch which is 1.4x) when F = 16.
The improvement grows further as F increases to 64. It
becomes more than 15x on all matrices except Twitch, and
on Twitch the improvement becomes at least 4.7x.

Using RAND, the H&C improvement over P2P is also sig-
nificant. When F = 16, H&C improves the iteration runtime
over P2P by 2x, 1.2x, 2x, 1.5x, 2.15x, and 1.25x respectively
on Amz Books, Amz Clothing & Jewelry, Amz Items,
Goodreads Reviews, Google Reviews and Twitch.
When F = 64, the respective values become 1.7x, 1.2x, 2x,
1.4x, 1.74x, and 1.22x. The slight reduction in improvement
is expected since increasing the value of F renders the
application bandwidth-bound. Therefore, the effect of the

9

2,
38

5,
98

7,
58

4

19

,6
27

,7
50

19

,6
27

,7
50

 9

,1
27

,8
79

 9

,1
27

,8
79 1,

16
3,

26
8,

09
6

 4

,9
80

,9
07

 4

,9
80

,9
07

 1

,7
00

,8
78

 1

,7
00

,8
78 1,

52
1,

25
7,

47
2

69

,3
75

,6
26

69

,3
75

,6
26

41

,2
05

,7
75

41

,2
05

,7
75

2,
13

0,
11

4,
56

0

12

,5
18

,2
41

12

,5
18

,2
41

 9

,4
48

,7
87

 9

,4
48

,7
87 3,

19
1,

64
8,

25
6

10

,0
30

,6
13

10

,0
30

,6
13

 2

,4
56

,9
18

 2

,4
56

,9
18 2,

01
4,

57
8,

68
8

 2
10

,2
33

,5
20

 2
10

,2
33

,5
20

77

,2
60

,1
01

77

,2
60

,1
01

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0e+00

1e+09

2e+09

3e+09

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.0e+00

5.0e+08

1.0e+09

1.5e+09

0.0e+00

3.0e+08

6.0e+08

9.0e+08

1.2e+09

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

2.5e+09
ve

ct
or

s
of

 s
iz

e
F

RAND HP

(a) tot vol in an SGD epoch

2,
33

0,
62

4

62

,1
58

63

,6
78

43

,2
28

59

,0
97

1,
13

6,
64

0

13

,4
55

13

,4
72

 8

,4
61

 8

,8
23

9,
87

4,
43

2

 1
11

,9
74

 1
15

,0
57

76

,6
88

 1
38

,9
95

2,
08

0,
76

8

29

,9
88

36

,0
01

22

,3
20

54

,7
07

3,
11

7,
05

6

21

,7
40

22

,3
34

11

,4
78

26

,5
06

6,
16

2,
43

2

 2
53

,2
00

 2
52

,5
38

 2
47

,7
07

 5
43

,3
54

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0e+00

2e+06

4e+06

6e+06

0e+00

1e+06

2e+06

3e+06

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

3e+05

6e+05

9e+05

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

ve
ct

or
s

of
 s

iz
e

F

(b) sum-max vol in an SGD epoch

 1
,0

48
,5

76

12
,5

00
,1

92

 6
,6

39
,1

28

 7
,5

03
,2

62

 4
,2

49
,6

37

 1
,0

48
,5

76

 3
,4

14
,5

27

 2
,9

58
,1

26

 1
,6

66
,5

41

 1
,3

81
,2

67

 1
,0

48
,5

76

38
,1

52
,5

17

 8
,1

50
,8

15

25
,6

55
,0

11

 6
,7

96
,9

89

 1
,0

48
,5

76

10
,5

70
,2

67

 5
,9

96
,2

11

 7
,5

00
,2

29

 4
,5

68
,2

92

 1
,0

48
,5

76

 9
,8

28
,6

34

 5
,0

49
,4

09

 2
,2

78
,9

31

 1
,5

54
,4

29

 1
,0

48
,5

76

56
,8

40
,3

37

 7
,9

76
,7

9025
,8

08
,5

82

 5
,7

12
,9

11

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0e+00

2e+07

4e+07

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

1e+07

2e+07

3e+07

4e+07

0e+00

1e+06

2e+06

3e+06

0.0e+00

4.0e+06

8.0e+06

1.2e+07

m
es

sa
ge

s

(c) tot msgs in an SGD epoch

 9
53

.4
9

 2
17

.0
2

 1
05

.8
4

 1
63

.7
8

 1
47

.3
0

 5
17

.3
5

39

.6
0

31

.0
0

39

.0
5

32

.7
8

3,
99

3.
15

 4
57

.5
8

 2
22

.6
6

 3
89

.1
1

 3
02

.9
8

 7
91

.7
8

 1
02

.1
3

68

.1
3

83

.6
3

75

.4
9

1,
20

4.
94

 1
47

.4
7

69

.9
0

44

.8
0

39

.5
7

2,
55

6.
19

1,
28

0.
16

1,
03

0.
23

1,
80

8.
06

1,
66

2.
55

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0

1000

2000

0

250

500

750

1000

1250

0

200

400

600

800

0

1000

2000

3000

4000

0

100

200

300

400

500

0

250

500

750

1000

tim
e

(m
s)

(d) SGD iteration time when F = 16

 3
,6

56
.5

6

24

4.
11

14

2.
59

17

4.
48

15

7.
63

 1
,7

70
.4

7

 4

2.
90

 3

5.
31

 3

8.
84

 3

5.
48

15
,1

37
.0

3

61

7.
06

31

2.
88

43

4.
17

35

1.
69

 3
,0

40
.3

1

13

6.
49

 9

6.
09

10

4.
23

 8

4.
17

 4
,7

88
.1

4

18

0.
63

10

3.
52

 4

6.
77

 4

2.
17

 9
,6

08
.6

6

 1
,4

93
.6

3

 1
,2

20
.7

2

 2
,0

42
.7

7

 1
,9

27
.2

8

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C DSGD P2P H&C

0

2500

5000

7500

10000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

0

5000

10000

15000

0

500

1000

1500

0

1000

2000

3000

Method

tim
e

(m
s)

(e) SGD iteration time when F = 64

Fig. 4. Comparing RAND- and HP-based P2P and H&C methods against RAND-based DSGD using communication cost metrics (a to c) and SGD
iteration time (d and e) using all dataset matrices on K = 1024 processors.

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024

24

25

26

27

24

24.5

25

25.5

26

26.5

27

24

24.5

25

25.5

26

26.5

24

25

26

27

24

24.5

25

25.5

26

24

25

26

27

number of processors

m
es

sa
ge

s
● P2P H&C 3lgK

(a) max-max msgs in an SGD epoch

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024

210

212

214

216

29

210

211

212

213

214

29

210

211

212

213

214

210

212

214

216

29

210

211

212

213

210

212

214

number of processors

m
es

sa
ge

s

● P2P H&C KlgK

(b) sum-max msgs in an SGD epoch

Fig. 5. Showcasing the upper bound of the max-max messages and sum-max messages sent per sub-epoch using the H&C method compared to
P2P on K = {64, . . . , 1024} processors.

H&C method with higher F values, although crucial, slightly
diminishes.

Using HP improves the P2P runtime by 1.3x, 1.17x,
1.22x and 3.35x on Amz Books, Amz Items, Goodreads
Reviews and Google Reviews when F = 16. On Amz
Clothing & Jewelry there is no significant improvement
and on Twitch there is deterioration by 1.4x. When F = 64,
HP improves the P2P runtime by 1.4x, 1.42x, 1.3x and
3.9x respectively on Amz Books, Amz Items, Goodreads
Reviews and Google Reviews. The increase in the gap
between HP and RAND in terms of P2P runtime when F
grows from 16 to 64 is expected since the HP method aims at
reducing the total volume, effect of which is seen more with
higher F values. We observed that the HP method improves
the H&C runtime compared to RAND only on Goodreads
Reviews and Google Reviews.

Fig. 6 shows the strong scaling curves of RAND-based
DSGD, P2P and H&C using two different F values on K =
{64, 128, 256, 512, 1024} processors. As seen in the figure,
P2P and H&C show superior scaling compared to DSGD.
H&C performs significantly better than P2P, especially with
smaller F values. The difference in performance between
P2P and H&C reduces with increasing F value since the
communication in SGD becomes more bandwidth-bound.

6.4 Evaluations with Loss Values

Since all the methods discussed in this work follow the
stratified SGD algorithm, their loss values per iteration is
expected to be very similar regardless of the communication
strategy used or number of processors. We demonstrate
this using Fig. 7a. The figure shows the loss value (y-axis)
following each SGD iteration (x-axis) of Amz Books and
Goodreads Reviews using the RAND-based DSGD, P2P,
H&C methods on K = {64, 256, 1024} processors. The loss

values are very close as expected thus the curves appear to
be on top of each other.

Fig. 7b shows the amount of time (x-axis) required
to reach a certain loss value (y-axis) of Amz Items and
Google Reviews using the RAND-based DSGD, P2P, H&C
methods on 1024 processors. The figure shows that DSGD
requires significantly more time to reach a certain loss value
compared to P2P and H&C.

Fig. 7c shows the scaling behavior of the RAND-
based H&C method with Amz Clothes & Jewelry and
Twitch in terms of loss value as the time increases.

7 RELATED WORK

There exist several works in the literature that adopt the
SSGD for parallel matrix completion. The work of Gemulla
et at. [2] proposed the SSGD approach as well as the parallel
DSGD algorithm discussed in Sections 2.2 and 3.1. Teflioudi
et al. [3] proposed DSGD++, an improved DSGD framework
for better performance. They use computation and commu-
nication overlaying through dividing the input matrix into
K × 2K blocks, and in each of the K sub-epochs DSGD++
performs computation on K blocks while simultaneously
communicating the other K blocks. They report up to 2.3x
improvement over DSGD in terms of runtime. Yun et al. [4]
extend the idea of DSGD++ in their framework, NOMAD,
and divide the input matrix into K ×M blocks. Each of the
K processors dedicates ` threads to update `H-matrix rows,
and M − ` other threads for communication. Once processor
px updates an H-matrix row, or a set of rows, it sends
it/them to another processor py that has idle computation
threads. DSGD, DSGD++ and NOMAD has the same total
communication volume during an SGD epoch per processor
which is equals to F ×M×K as discussed in Section 3.1.
The number of messages sent per processor during an

11

●
●

●
●

● ●●

● ●
●

●
● ● ●

●

●
●

● ●

●

●● ● ●

●

●

●

●

●

●

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024
210

211

212

213

26

27

28

29

210

26

27

28

29

210

28

29

210

211

212

25

26

27

28

29

27

28

29

210

number of processors

S
G

D
 it

er
at

io
n

tim
e

(m
s)

● DSGD P2P H&C

(a) F = 16

●●
● ●●

●● ● ●● ●
● ● ●● ●● ● ●● ●●

● ●●

●

●
●

●

●

Amz Books Amz Clothing & Jewelry Amz Items Goodreads Reviews Google Reviews Twitch streams

64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024

211

212

213

214

27

28

29

210

211

212

27

28

29

210

211

29

210

211

212

213

214

25

26

27

28

29

210

211

27

28

29

210

211

212

number of processors

S
G

D
 it

er
at

io
n

tim
e

(m
s)

(b) F = 64

Fig. 6. Strong scaling curves of DSGD, P2P and H&C on K = {64, 128, 256, 512, 1024} processors using all dataset matrices with two F values.

epoch of DSGD or DSGD++ has an upper bound of O(K),
whereas NOMAD may send up to O(M) messages. Guo et
al. [15] proposed a novel framework, BaPa, for improving the
nonzero load balance of DSGD through a novel algorithm for
balancing per-processor and per-epoch ratings. Their BaPa-
based DSGD shows a significant runtime improvement on
small number of processors (< 16). However, their results
show that both the original DSGD as well as the BaPa-based
DSGD stop scaling after 256 processors.

There are several asynchronous-SGD-based parallel ma-
trix completion algorithms in the literature. ASGD [3] (shown
in the upper part of Fig. 1) is the simplest example of
such algorithm. During ASGD, it is possible that several
processors update the same H-matrix row hj at the same
time (i.e., stale updates). This results in each processor
having a different copy of hj . These copies are coordinated
by sending them to a processor responsible for hj . This
processor takes their average and then sends the up-to-date
version of hj back to the same set of processors. This type of
coordination is done once or more during an SGD epoch [3],
[16]. GASGD [16] extends ASGD by utilizing intelligent
partitioning for balancing computational loads, reducing
communication between processors, and reducing staleness.
The authors utilize a bipartite graph model and propose a
partitioning method based on the balanced K-way vertex-cut
problem [17] to achieve the partitioning goals. Luo et al. [18]
proposed a different strategy to facilitate asynchronously
computing SGD in parallel which is called alternating SGD.
In alternating SGD, each epoch is divided into two sub-
epochs where in each sub-epochs one factor matrix is fixed
and the other is updated. This approach enables limiting the
feature vector updates that use stale data to one of the two
factor matrices during a sub-epoch. Recently, Shi et al. [19]

proposed a distributed algorithm based on alternating SGD
with data-aware partitioning.

8 CONCLUSIONS

We proposed a framework for scaling stratified SGD through
significantly reducing the communication overhead. The
framework targets at reducing the bandwidth overhead by
efficiently finding the required communication during an
SGD epoch, using P2P messages to perform it, and an HP-
based method to further reduce the P2P communication
volume. The framework targets at reducing the increase
in latency overhead through the novel H&C strategy to
limit the number of messages sent by a processor per epoch
to O(K lgK). Our proposed framework achieves scalable
distributed SGD, on up to K = 1024 processors, without
any compromise on convergence rate or any update on stale
factors. The proposed framework achieves up to 15x runtime
improvement over the state of the art DSGD method, on 1024
processors, using six real-world rating matrices.

REFERENCES

[1] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: a framework for machine
learning and data mining in the cloud,” Proceedings of the VLDB
Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[2] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,”
in Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2011, pp. 69–77.

[3] C. Teflioudi, F. Makari, and R. Gemulla, “Distributed matrix
completion,” in 2012 IEEE 12th International Conference on Data
Mining, 2012, pp. 655–664.

12

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

● ● ● ● ● ●

●

Amz Books Goodreads Reviews

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

3e+07

6e+07

9e+07

1.0e+08

1.5e+08

2.0e+08

SGD Iteration

Lo
ss

● 1024_DSGD
1024_H&C
1024_P2P
256_DSGD
256_H&C
256_P2P
64_DSGD
64_H&C
64_P2P

(a) SGD iteration vs. loss for all methods on different K values.

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

Amz Items Google Reviews

0 50 100 150 0 10 20 30 40 50

7e+07

8e+07

9e+07

3e+08

4e+08

5e+08

6e+08

7e+08

Time (s)

Lo
ss

● DSGD
P2P
H&C

(b) Time vs. loss for all methods on K=1024 processors.

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

Amz Clothing & Jewelry Twitch streams

0 1 2 0 50 100
3.2e+08

3.6e+08

4.0e+08

2.5e+07

3.0e+07

3.5e+07

4.0e+07

4.5e+07

Time (s)

Lo
ss

● 64
128
256
512
1024

(c) Time vs. loss for H&C on different K values.

Fig. 7. Loss curves.

[4] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon,
“Nomad: Non-locking, stochastic multi-machine algorithm for
asynchronous and decentralized matrix completion,” Proceedings of
the VLDB Endowment, vol. 7, no. 11, 2014.

[5] R. O. Selvitopi, M. M. Ozdal, and C. Aykanat, “A novel method
for scaling iterative solvers: Avoiding latency overhead of parallel
sparse-matrix vector multiplies,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 3, pp. 632–645, 2015.

[6] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37,
2009.

[7] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication,”
IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 7,
pp. 673–693, July 1999.

[8] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: applications in VLSI domain,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7,
no. 1, pp. 69–79, March 1999.

[9] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partition-
ing,” VLSI design, vol. 11, no. 3, pp. 285–300, 2000.

[10] R. He and J. McAuley, “Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering,”
in proceedings of the 25th international conference on world wide web,
2016, pp. 507–517.

[11] M. Wan and J. McAuley, “Item recommendation on monotonic
behavior chains,” in Proceedings of the 12th ACM conference on
recommender systems, 2018, pp. 86–94.

[12] R. He, W.-C. Kang, and J. McAuley, “Translation-based recommen-
dation,” in Proceedings of the eleventh ACM conference on recommender
systems, 2017, pp. 161–169.

[13] R. Pasricha and J. McAuley, “Translation-based factorization ma-
chines for sequential recommendation,” in Proceedings of the 12th
ACM Conference on Recommender Systems, 2018, pp. 63–71.

[14] J. Rappaz, J. McAuley, and K. Aberer, “Recommendation on live-
streaming platforms: Dynamic availability and repeat consump-
tion,” in Fifteenth ACM Conference on Recommender Systems, 2021,
pp. 390–399.

[15] R. Guo, F. Zhang, L. Wang, W. Zhang, X. Lei, R. Ranjan, and
A. Y. Zomaya, “Bapa: A novel approach of improving load balance
in parallel matrix factorization for recommender systems,” IEEE
Transactions on Computers, vol. 70, no. 5, pp. 789–802, 2021.

[16] F. Petroni and L. Querzoni, “GASGD: Stochastic gradient descent
for distributed asynchronous matrix completion via graph parti-
tioning.” in Proceedings of the 8th ACM Conference on Recommender
Systems, ser. RecSys ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 241–248.

[17] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural
graphs,” in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’12. USA: USENIX
Association, 2012, p. 17–30.

[18] X. Luo, H. Liu, G. Gou, Y. Xia, and Q. Zhu, “A parallel matrix
factorization based recommender by alternating stochastic gradient
decent,” Engineering Applications of Artificial Intelligence, vol. 25,
no. 7, pp. 1403–1412, 2012, advanced issues in Artificial Intelligence
and Pattern Recognition for Intelligent Surveillance System in
Smart Home Environment.

[19] X. Shi, Q. He, X. Luo, Y. Bai, and M. Shang, “Large-scale and
scalable latent factor analysis via distributed alternative stochastic
gradient descent for recommender systems,” IEEE Transactions on
Big Data, pp. 1–1, 2020.

Nabil Abubaker received the BS degree from
An-Najah National University, Palestine, where
he was an active IEEE student member and
served as the vice-chair of the university’s student
branch. He received the MS degree from Bilkent
University, Turkey where he is currently pursuing
his PhD degree, all in Computer Engineering. His
research interests include parallel and scientific
computing, with focus on communication-efficient
iterative algorithms.

M. Ozan Karsavuran received the BS, MS, and
PhD degrees in 2012, 2014, and 2020, respec-
tively, in computer engineering from Bilkent Uni-
versity, Turkey, where he is currently postdoc-
doral researcher. His research interests include
combinatorial scientific computing, graph and
hypergraph partitioning for sparse matrix and
tensor computations, and parallel computing in
distributed and shared memory systems.

Cevdet Aykanat received the BS and MS de-
grees from Middle East Technical University,
Turkey, both in electrical engineering, and the
PhD degree from Ohio State University, Colum-
bus, in electrical and computer engineering. He
worked at the Intel Supercomputer Systems Di-
vision, Beaverton, Oregon, as a research asso-
ciate. Since 1989, he has been affiliated with the
Department of Computer Engineering, Bilkent
University, Turkey, where he is currently a profes-
sor. His research interests mainly include parallel

computing and its combinatorial aspects. He is the recipient of the 1995
Investigator Award of The Scientific and Technological Research Council
of Turkey and 2007 Parlar Science Award. He has served as an Associate
Editor of IEEE Transactions of Parallel and Distributed Systems between
2009 and 2013.

